Download Free Terrestrial Neutron Induced Soft Errors In Advanced Memory Devices Book in PDF and EPUB Free Download. You can read online Terrestrial Neutron Induced Soft Errors In Advanced Memory Devices and write the review.

Terrestrial neutron-induced soft errors in semiconductor memory devices are currently a major concern in reliability issues. Understanding the mechanism and quantifying soft-error rates are primarily crucial for the design and quality assurance of semiconductor memory devices.This book covers the relevant up-to-date topics in terrestrial neutron-induced soft errors, and aims to provide succinct knowledge on neutron-induced soft errors to the readers by presenting several valuable and unique features.
Terrestrial neutron-induced soft errors in semiconductor memory devices are currently a major concern in reliability issues. Understanding the mechanism and quantifying soft-error rates are primarily crucial for the design and quality assurance of semiconductor memory devices.This book covers the relevant up-to-date topics in terrestrial neutron-induced soft errors, and aims to provide succinct knowledge on neutron-induced soft errors to the readers by presenting several valuable and unique features.
Soft errors are a multifaceted issue at the crossroads of applied physics and engineering sciences. Soft errors are by nature multiscale and multiphysics problems that combine not only nuclear and semiconductor physics, material sciences, circuit design, and chip architecture and operation, but also cosmic-ray physics, natural radioactivity issues, particle detection, and related instrumentation. Soft Errors: From Particles to Circuits addresses the problem of soft errors in digital integrated circuits subjected to the terrestrial natural radiation environment—one of the most important primary limits for modern digital electronic reliability. Covering the fundamentals of soft errors as well as engineering considerations and technological aspects, this robust text: Discusses the basics of the natural radiation environment, particle interactions with matter, and soft-error mechanisms Details instrumentation developments in the fields of environment characterization, particle detection, and real-time and accelerated tests Describes the latest computational developments, modeling, and simulation strategies for the soft error-rate estimation in digital circuits Explores trends for future technological nodes and emerging devices Soft Errors: From Particles to Circuits presents the state of the art of this complex subject, providing comprehensive knowledge of the complete chain of the physics of soft errors. The book makes an ideal text for introductory graduate-level courses, offers academic researchers a specialized overview, and serves as a practical guide for semiconductor industry engineers or application engineers.
This book covers the practical application of dependable electronic systems in real industry, such as space, train control and automotive control systems, and network servers/routers. The impact from intermittent errors caused by environmental radiation (neutrons and alpha particles) and EMI (Electro-Magnetic Interference) are introduced together with their most advanced countermeasures. Power Integration is included as one of the most important bases of dependability in electronic systems. Fundamental technical background is provided, along with practical design examples. Readers will obtain an overall picture of dependability from failure causes to countermeasures for their relevant systems or products, and therefore, will be able to select the best choice for maximum dependability.
This book discusses the new roles that the VLSI (very-large-scale integration of semiconductor circuits) is taking for the safe, secure, and dependable design and operation of electronic systems. The book consists of three parts. Part I, as a general introduction to this vital topic, describes how electronic systems are designed and tested with particular emphasis on dependability engineering, where the simultaneous assessment of the detrimental outcome of failures and cost of their containment is made. This section also describes the related research project “Dependable VLSI Systems,” in which the editor and authors of the book were involved for 8 years. Part II addresses various threats to the dependability of VLSIs as key systems components, including time-dependent degradations, variations in device characteristics, ionizing radiation, electromagnetic interference, design errors, and tampering, with discussion of technologies to counter those threats. Part III elaborates on the design and test technologies for dependability in such applications as control of robots and vehicles, data processing, and storage in a cloud environment and heterogeneous wireless telecommunications. This book is intended to be used as a reference for engineers who work on the design and testing of VLSI systems with particular attention to dependability. It can be used as a textbook in graduate courses as well. Readers interested in dependable systems from social and industrial–economic perspectives will also benefit from the discussions in this book.
This journal is devoted to the latest research on physics, publishing articles on everything from elementary particle behavior to black holes and the history of the universe.
In 1912 Victor Franz Hess made the revolutionary discovery that ionizing radiation is incident upon the Earth from outer space. He showed with ground-based and balloon-borne detectors that the intensity of the radiation did not change significantly between day and night. Consequently, the sun could not be regarded as the sources of this radiation and the question of its origin remained unanswered. Today, almost one hundred years later the question of the origin of the cosmic radiation still remains a mystery.Hess' discovery has given an enormous impetus to large areas of science, in particular to physics, and has played a major role in the formation of our current understanding of universal evolution. For example, the development of new fields of research such as elementary particle physics, modern astrophysics and cosmology are direct consequences of this discovery. Over the years the field of cosmic ray research has evolved in various directions: Firstly, the field of particle physics that was initiated by the discovery of many so-called elementary particles in the cosmic radiation. There is a strong trend from the accelerator physics community to reenter the field of cosmic ray physics, now under the name of astroparticle physics. Secondly, an important branch of cosmic ray physics that has rapidly evolved in conjunction with space exploration concerns the low energy portion of the cosmic ray spectrum. Thirdly, the branch of research that is concerned with the origin, acceleration and propagation of the cosmic radiation represents a great challenge for astrophysics, astronomy and cosmology. Presently very popular fields of research have rapidly evolved, such as high-energy gamma ray and neutrino astronomy. In addition, high-energy neutrino astronomy may soon initiate as a likely spin-off neutrino tomography of the Earth and thus open a unique new branch of geophysical research of the interior of the Earth. Finally, of considerable interest are the biological and medical aspects of the cosmic radiation because of it ionizing character and the inevitable irradiation to which we are exposed. This book is a reference manual for researchers and students of cosmic ray physics and associated fields and phenomena. It is not intended to be a tutorial. However, the book contains an adequate amount of background materials that its content should be useful to a broad community of scientists and professionals. The present book contains chiefly a data collection in compact form that covers the cosmic radiation in the vicinity of the Earth, in the Earth's atmosphere, at sea level and underground. Included are predominantly experimental but also theoretical data. In addition the book contains related data, definitions and important relations. The aim of this book is to offer the reader in a single volume a readily available comprehensive set of data that will save him the need of frequent time consuming literature searches.
This handbook is a timely resource for the rapidly growing field of heavy-ion transport-model theory and its applications to the fields of accelerator development, heavy-ion radiotherapy, and shielding of accelerators and in space. Data from over 20 years of experiments in the production of secondary neutrons and spallation products are contained in the handbook, and are available on the accompanying CD. Transport modelers and experimentalists will find the detailed descriptions of the experiments and subsequent analyses to be a valuable aid in utilizing the data for their particular applicati.
Spacecraft depend on electronic components that must perform reliably over missions measured in years and decades. Space radiation is a primary source of degradation, reliability issues, and potentially failure for these electronic components. Although simulation and modeling are valuable for understanding the radiation risk to microelectronics, there is no substitute for testing, and an increased use of commercial-off-the- shelf parts in spacecraft may actually increase requirements for testing, as opposed to simulation and modeling. Testing at the Speed of Light evaluates the nation's current capabilities and future needs for testing the effects of space radiation on microelectronics to ensure mission success and makes recommendations on how to provide effective stewardship of the necessary radiation test infrastructure for the foreseeable future.