Download Free Ten Physical Applications Of Spectral Zeta Functions Book in PDF and EPUB Free Download. You can read online Ten Physical Applications Of Spectral Zeta Functions and write the review.

This monography is, in the first place, a commented guide that invites the reader to plunge into the thrilling world ofzeta functions and their appli cations in physics. Different aspects ofthis field ofknowledge are considered, as one can see specifically in the Table of Contents. The level of the book is elementary. It is intended for people with no or little knowledge of the subject. Everything is explained in full detail, in particular, the mathematical difficulties and tricky points, which too often constitute an insurmountable barrier for those who would have liked to be come aquainted with that matter but never dared to ask (or did not manage to understand more complete, higher-level treatises). In this sense the present work is to be considered as a basic introduction and exercise collection for other books that have appeared recently. Concerning the physical applications of the method ofzeta-function reg ularization here described, quite a big choice is presented. The reader must be warned, however, that I have not tried to explain the underlying physi cal theories in complete detail (since this is undoubtedly out of scope), but rather to illustrate - simply and clearly - the precise way the method must be applied. Sometimes zeta regularization is explicitly compared in the text with other procedures the reader is supposed to be more familiar with (such as cut-off or dimensional regularization).
Zeta-function regularization is a powerful method in perturbation theory, and this book is a comprehensive guide for the student of this subject. Everything is explained in detail, in particular the mathematical difficulties and tricky points, and several applications are given to show how the procedure works in practice, for example in the Casimir effect, gravity and string theory, high-temperature phase transition, topological symmetry breaking, and non-commutative spacetime. The formulae, some of which are new, can be directly applied in creating physically meaningful, accurate numerical calculations. The book acts both as a basic introduction and a collection of exercises for those who want to apply this regularization procedure in practice. Thoroughly revised, updated and expanded, this new edition includes novel, explicit formulas on the general quadratic, the Chowla-Selberg series case, an interplay with the Hadamard calculus, and also features a fresh chapter on recent cosmological applications, including the calculation of the vacuum energy fluctuations at large scale in braneworld and other models.
This book is the result of several years of work by the authors on different aspects of zeta functions and related topics. The aim is twofold. On one hand, a considerable number of useful formulas, essential for dealing with the different aspects of zeta-function regularization (analytic continuation, asymptotic expansions), many of which appear here, in book format, for the first time are presented. On the other hand, the authors show explicitly how to make use of such formulas and techniques in practical applications to physical problems of very different nature. Virtually all types of zeta functions are dealt with in the book.
This book contains accounts of work presented during the research conference, ``Zeta Functions in Geometry,'' held at the Tokyo Institute of Technology in August 1990. The aim of the conference was to provide an opportunity for the discussion of recent results by geometers and number theorists on zeta functions in several different categories. The exchange of ideas produced new insights on various geometric zeta functions, as well as the classical zeta functions. The zeta functions covered here are the Selberg zeta functions, the Ihara zeta functions, spectral zeta functions, and those associated with prehomogeneous vector spaces. Accessible to graduate students with background in geometry and number theory, Zeta Functions in Geometry will prove useful for its presentation of new results and up-to-date surveys.
Consists of lectures that are part of the MSRI workshops and that introduce students and researchers to the intriguing world of theoretical physics.
Some major developments of physics in the last three decades are addressed by highly qualified specialists in different specific fields. They include renormalization problems in QFT, vacuum energy fluctuations and the Casimir effect in different configurations, and a wealth of applications. A number of closely related issues are also considered. The cosmological applications of these theories play a crucial role and are at the very heart of the book; in particular, the possibility to explain in a unified way the whole history of the evolution of the Universe: from primordial inflation to the present day accelerated expansion. Further, a description of the mathematical background underlying many of the physical theories considered above is provided. This includes the uses of zeta functions in physics, as in the regularization problems in QFT already mentioned, specifically in curved space-time, and in Casimir problems as.
Zeta and q-Zeta Functions and Associated Series and Integrals is a thoroughly revised, enlarged and updated version of Series Associated with the Zeta and Related Functions. Many of the chapters and sections of the book have been significantly modified or rewritten, and a new chapter on the theory and applications of the basic (or q-) extensions of various special functions is included. This book will be invaluable because it covers not only detailed and systematic presentations of the theory and applications of the various methods and techniques used in dealing with many different classes of series and integrals associated with the Zeta and related functions, but stimulating historical accounts of a large number of problems and well-classified tables of series and integrals. - Detailed and systematic presentations of the theory and applications of the various methods and techniques used in dealing with many different classes of series and integrals associated with the Zeta and related functions
This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists, at levels ranging from advanced undergraduate students to professional scientists. The book bridges the acknowledged gap between the different languages used by mathematicians and physicists. For students of mathematics the author shows that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which goes beyond the usual curriculum in physics.
Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary. Throughout Geometry, Complex Dimensions and Zeta Functions, Second Edition, new results are examined and a new definition of fractality as the presence of nonreal complex dimensions with positive real parts is presented. The new final chapter discusses several new topics and results obtained since the publication of the first edition.
This book provides a detailed treatment of the various facets of modern Sturm?Liouville theory, including such topics as Weyl?Titchmarsh theory, classical, renormalized, and perturbative oscillation theory, boundary data maps, traces and determinants for Sturm?Liouville operators, strongly singular Sturm?Liouville differential operators, generalized boundary values, and Sturm?Liouville operators with distributional coefficients. To illustrate the theory, the book develops an array of examples from Floquet theory to short-range scattering theory, higher-order KdV trace relations, elliptic and algebro-geometric finite gap potentials, reflectionless potentials and the Sodin?Yuditskii class, as well as a detailed collection of singular examples, such as the Bessel, generalized Bessel, and Jacobi operators. A set of appendices contains background on the basics of linear operators and spectral theory in Hilbert spaces, Schatten?von Neumann classes of compact operators, self-adjoint extensions of symmetric operators, including the Friedrichs and Krein?von Neumann extensions, boundary triplets for ODEs, Krein-type resolvent formulas, sesquilinear forms, Nevanlinna?Herglotz functions, and Bessel functions.