Download Free Temporal Data Mining Book in PDF and EPUB Free Download. You can read online Temporal Data Mining and write the review.

From basic data mining concepts to state-of-the-art advances, this book covers the theory of the subject as well as its application in a variety of fields. It discusses the incorporation of temporality in databases as well as temporal data representation, similarity computation, data classification, clustering, pattern discovery, and prediction. The book also explores the use of temporal data mining in medicine and biomedical informatics, business and industrial applications, web usage mining, and spatiotemporal data mining. Along with various state-of-the-art algorithms, each chapter includes detailed references and short descriptions of relevant algorithms and techniques described in other references.
"This book presents probable solutions when discovering the spatial sequence patterns by incorporating the information into the sequence of patterns, and introduces new classes of spatial sequence patterns, called flow and generalized spatio-temporal patterns, addressing different scenarios in spatio-temporal data by modeling them as graphs, providing a comprehensive synopsis on two successful partition-based algorithms designed by the authors"--Provided by publisher.
Calendar and time units and specialized units, such as business days and academic years, play a major role in a wide range of information system applications. System support for reasoning about these units, called granularities, is important for the efficient design, use, and implementation of such applications. This book deals with several aspects of temporal information and provides a unifying model for granularities. Practitioners can learn about critical aspects that must be taken into account when designing and implementing databases supporting temporal information.
Temporal Data Mining via Unsupervised Ensemble Learning provides the principle knowledge of temporal data mining in association with unsupervised ensemble learning and the fundamental problems of temporal data clustering from different perspectives. By providing three proposed ensemble approaches of temporal data clustering, this book presents a practical focus of fundamental knowledge and techniques, along with a rich blend of theory and practice. Furthermore, the book includes illustrations of the proposed approaches based on data and simulation experiments to demonstrate all methodologies, and is a guide to the proper usage of these methods. As there is nothing universal that can solve all problems, it is important to understand the characteristics of both clustering algorithms and the target temporal data so the correct approach can be selected for a given clustering problem. Scientists, researchers, and data analysts working with machine learning and data mining will benefit from this innovative book, as will undergraduate and graduate students following courses in computer science, engineering, and statistics. Includes fundamental concepts and knowledge, covering all key tasks and techniques of temporal data mining, i.e., temporal data representations, similarity measure, and mining tasks Concentrates on temporal data clustering tasks from different perspectives, including major algorithms from clustering algorithms and ensemble learning approaches Presents a rich blend of theory and practice, addressing seminal research ideas and looking at the technology from a practical point-of-view
This volume contains updated versions of the ten papers presented at the First International Workshop on Temporal, Spatial and Spatio-Temporal Data Mining (TSDM 2000) held in conjunction with the 4th European Conference on Prin- ples and Practice of Knowledge Discovery in Databases (PKDD 2000) in Lyons, France in September, 2000. The aim of the workshop was to bring together experts in the analysis of temporal and spatial data mining and knowledge discovery in temporal, spatial or spatio-temporal database systems as well as knowledge engineers and domain experts from allied disciplines. The workshop focused on research and practice of knowledge discovery from datasets containing explicit or implicit temporal, spatial or spatio-temporal information. The ten original papers in this volume represent those accepted by peer review following an international call for papers. All papers submitted were refereed by an international team of data mining researchers listed below. We would like to thank the team for their expert and useful help with this process. Following the workshop, authors were invited to amend their papers to enable the feedback received from the conference to be included in the ?nal papers appearing in this volume. A workshop report was compiled by Kathleen Hornsby which also discusses the panel session that was held.
Mining Spatio-Temporal Information Systems, an edited volume is composed of chapters from leading experts in the field of Spatial-Temporal Information Systems and addresses the many issues in support of modeling, creation, querying, visualizing and mining. Mining Spatio-Temporal Information Systems is intended to bring together a coherent body of recent knowledge relating to STIS data modeling, design, implementation and STIS in knowledge discovery. In particular, the reader is exposed to the latest techniques for the practical design of STIS, essential for complex query processing. Mining Spatio-Temporal Information Systems is structured to meet the needs of practitioners and researchers in industry and graduate-level students in Computer Science.
Data mining of massive data sets is transforming the way we think about crisis response, marketing, entertainment, cybersecurity and national intelligence. Collections of documents, images, videos, and networks are being thought of not merely as bit strings to be stored, indexed, and retrieved, but as potential sources of discovery and knowledge, requiring sophisticated analysis techniques that go far beyond classical indexing and keyword counting, aiming to find relational and semantic interpretations of the phenomena underlying the data. Frontiers in Massive Data Analysis examines the frontier of analyzing massive amounts of data, whether in a static database or streaming through a system. Data at that scale-terabytes and petabytes-is increasingly common in science (e.g., particle physics, remote sensing, genomics), Internet commerce, business analytics, national security, communications, and elsewhere. The tools that work to infer knowledge from data at smaller scales do not necessarily work, or work well, at such massive scale. New tools, skills, and approaches are necessary, and this report identifies many of them, plus promising research directions to explore. Frontiers in Massive Data Analysis discusses pitfalls in trying to infer knowledge from massive data, and it characterizes seven major classes of computation that are common in the analysis of massive data. Overall, this report illustrates the cross-disciplinary knowledge-from computer science, statistics, machine learning, and application disciplines-that must be brought to bear to make useful inferences from massive data.