Download Free Template Synthesis Of Macrocyclic Compounds Book in PDF and EPUB Free Download. You can read online Template Synthesis Of Macrocyclic Compounds and write the review.

The synthesis of macrocycles is an art in itself. Template-controlled synthesis provides elegant access to fascinating macrocyclic structures. Polyazamacrocycles, crown ethers, cryptands, rotaxanes, knots -- the range of macrocyclic compounds is as broad as their potential application as molecular switches, in ion exchange, electron transfer or catalysis. This book provides authoritative information on all aspects of template-controlled macrocyclizations. It covers in depth the current state of research on template processes - novel synthetic techniques and mechanistic approaches. The critical discussion of the diverse synthetic routes includes the detailed characterization of the broad variety of macrocyclic products. References to applications of macrocyclic compounds and over 1,500 citations make this handbook an indispensable tool for chemists in academia and industry. Researchers in organic and supramolecular chemistry, biotechnology, and inorganic chemistry will find inspiration for the design, synthesis, and myriad uses of new synthetic macrocycles.
This book surveys the relatively new area of the synthesis of organic ligands when metal ions act as a template. In the last fifty years this field has undergone an explosive development, marked by a great amount of literature. The material in the book has been arranged according to the type of chemical reaction involved. In this frame, the basic principles of metal template reactions and the shape of the molecules are considered. Designed to satisfy the demands of students, young researchers doing their PhDs, and those working in the field of coordination chemistry, the book details the role of the metal ions and the specific properties of the formed complexes. Metal Mediated Template Synthesis of Ligands offers a comprehensive analysis with wide-ranging references and provides an extensive overview of research on metal-directed organic ligands over the past five decades. Contents: The Template Effect; Alkylation Reactions; Schiff Condensation; Mannich Condensation; Self Condensation of Nitriles; Self-Assembled Systems. Readership: Upper level undergraduates, graduate students, academics, researchers industrialists in inorganic, solid-state, supramolecular and organic chemistry.
Including case studies of macrocyclic marketed drugs and macrocycles in drug development, this book helps medicinal chemists deal with the synthetic and conceptual challenges of macrocycles in drug discovery efforts. Provides needed background to build a program in macrocycle drug discovery –design criteria, macrocycle profiles, applications, and limitations Features chapters contributed from leading international figures involved in macrocyclic drug discovery efforts Covers design criteria, typical profile of current macrocycles, applications, and limitations
Clathrochelates are compounds which contain a metal ion encapsulated within a three dimensional cage of macrobicyclic ligand atoms. Within this cage the metal has unique properties and is to a great extent isolated from environmental factors. Such complexes are suitable as models of the most essential biological systems, membrane transport, electron carriers, highly selective and sensitive analytical reagents, catalysts for photochemical and redox processes, cation and anion receptors, etc. The aim of this monograph is to generalize and analyze experimental and theoretical data on clathrochelates in order to promote further research in this promising field of chemistry.Chapter 1 gives general concepts of complexes with encapsulated metal ions, discusses basic specific features of these compounds, considers and characterizes the main types of compounds with encapsulated metal ions and the main classes of clathrochelates, and includes the current nomenclature. Chapter 2 deals with the pathways of clathrochelate synthesis and the general procedures for the synthesis of macrobicyclic tris-dioximates, phosphorus-containing tris-diiminates, sepulchrates, sarcophagi-nates, and polyene and other types of clathrochelate complexes. Chapter 3 concerns studies of the electronic and spatial structure of clathrochelate complexes. In Chapter 4, the kinetics and mechanism of synthesis and decomposition reactions of macrobicyclic tris-dioximates, sarcophaginates, and sepulchrates in solution and gas phases are discussed. Chapter 5 considers the electrochemical, photochemical, and some other characteristics of clathrochelates and their applications associated with these characteristics. Finally, the practical applications of the unique properties of clathrochelates and perspectives on the synthesis of new clathrochelates are described in Chapters 6 and 7, respectively.
This fundamental book presents the most comprehensive summary of the current state of the art in the chemistry of cage compounds. It introduces different ways of how ions and molecules can be encapsulated by three-dimensional caging ligands to form molecular and polymeric species: covalent, supramolecular, and coordination capsules. The authors introduce their classification, reactivity, and selected practical applications. Because encapsulation can isolate caged ions and molecules from external factors, the encapsulated species can exhibit unique physical and chemical properties. The resulting specific reactivity and selectivity can open up a range of applications, including chemical separation, recognition, chiral separation, catalysis, applications as sensors or probes, as molecular or supramolecular devices, or molecular carriers (cargo).A particularly strong emphasis in this book is on the summary and review of the synthesis of various types of cage compounds. Readers will find over 850 literature references summarized and clearly represented in over 600 schemes and illustrations. The book is structured by the types of caging ligands (covalent, supramolecular, or coordination capsules). The authors further arranged the chapters by ligand classes and types of encapsulated species (neutral molecules, anions, or cations). Readers will hence find an exhaustive reference resource and summary of the current state of research into encapsulated species, nowadays almost a separated realm of modern chemistry.
Macrocyclic Chemistry: Current Trends and Future Perspectives illustrates essential concepts in this expanding research field covering both basic and applied studies. Written by well-known experts from around the world, the topics of the chapters range from new macrocyclic architectures with different functions and self-assembly processes through to the modeling and dynamics of such systems. The content also reflects on application possibilities in analytical chemistry, separation processes, material preparation and medicine. Thus this book serves as a creative source of research strategies and methodic tools. Providing an excellent overview of the field, this book will be a valuable resource for researchers in industry and academic institutions as well as for teachers of science and graduate students. This book is devoted to the long-standing tradition of the International Symposia on Macrocyclic Chemistry (ISMC) and published to coincide with the 30th meeting, Dresden, Germany.
This book aims to overview the role of non-covalent interactions, such as hydrogen and halogen bonding, π-π, π-anion and electrostatic interactions, hydrophobic effects and van der Waals forces in the synthesis of organic and inorganic compounds, as well as in design of new crystals and function materials. The proposed book should allow to combine, in a systematic way, recent advances on the application of non-covalent interactions in synthesis and design of new compounds and functional materials with significance in Inorganic, Organic, Coordination, Organometallic, Pharmaceutical, Biological and Material Chemistries. Therefore, it should present a multi- and interdisciplinary character assuring a rather broad scope. We believe it will be of interest to a wide range of academic and research staff concerning the synthesis of new compounds, catalysis and materials. Each chapter will be written by authors who are well known experts in their respective fields.
The Advances in Inorganic Chemistry series present timely and informative summaries of the current progress in a variety of subject areas within inorganic chemistry, ranging from bio-inorganic to solid state studies. This acclaimed serial features reviews written by experts in the field and serves as an indispensable reference to advanced researchers. Each volume contains an index, and each chapter is fully referenced. - Features comprehensive reviews on the latest developments - Includes contributions from leading experts in the field - Serves as an indispensable reference to advanced researchers
Each chapter of Phosphorus Compounds: Advanced Tools in Catalysis and Material Sciences have been carefully selected by the editors in order to represent a state-of-the-art overview of how phosphorus chemistry can provide solutions in various fields of applications. The editors have assembled an international array of world-renowned scientists and each chapter is written by experts in the fields of synthetic chemistry, homogeneous catalysis, dendrimers, theoretical calculations, materials science, and medicinal chemistry with a special focus on the chemistry of phosphorus compounds. Phosphorus Compounds: Advanced Tools in Catalysis and Material Sciences is of interest to a general readership ranging from advanced university course students to experts in academia and industry.