Download Free Temperature Bitter Cold Book in PDF and EPUB Free Download. You can read online Temperature Bitter Cold and write the review.

Improved housing conditions can save lives, prevent disease, increase quality of life, reduce poverty, and help mitigate climate change. Housing is becoming increasingly important to health in light of urban growth, ageing populations and climate change. The WHO Housing and health guidelines bring together the most recent evidence to provide practical recommendations to reduce the health burden due to unsafe and substandard housing. Based on newly commissioned systematic reviews, the guidelines provide recommendations relevant to inadequate living space (crowding), low and high indoor temperatures, injury hazards in the home, and accessibility of housing for people with functional impairments. In addition, the guidelines identify and summarize existing WHO guidelines and recommendations related to housing, with respect to water quality, air quality, neighbourhood noise, asbestos, lead, tobacco smoke and radon. The guidelines take a comprehensive, intersectoral perspective on the issue of housing and health and highlight co-benefits of interventions addressing several risk factors at the same time. The WHO Housing and health guidelines aim at informing housing policies and regulations at the national, regional and local level and are further relevant in the daily activities of implementing actors who are directly involved in the construction, maintenance and demolition of housing in ways that influence human health and safety. The guidelines therefore emphasize the importance of collaboration between the health and other sectors and joint efforts across all government levels to promote healthy housing. The guidelines' implementation at country-level will in particular contribute to the achievement of the Sustainable Development Goals on health (SDG 3) and sustainable cities (SDG 11). WHO will support Member States in adapting the guidelines to national contexts and priorities to ensure safe and healthy housing for all.
The volume is the first comprehensive typological study of the conceptualisation of temperature in languages as reflected in their systems of central temperature terms (hot, cold, to freeze, etc.). The key issues addressed here include questions such as how languages categorize the temperature domain and what other uses the temperature expressions may have, e.g., when metaphorically referring to emotions (‘warm words’). The volume contains studies of more than 50 genetically, areally and typologically diverse languages and is unique in considering cross-linguistic patterns defined both by lexical and grammatical information. The detailed descriptions of the linguistic and extra-linguistic facts will serve as an important step in teasing apart the role of the different factors in how we speak about temperature – neurophysiology, cognition, environment, social-cultural practices, genetic relations among languages, and linguistic contact. The book is a significant contribution to semantic typology, and will be of interest for linguists, psychologists, anthropologists and philosophers.
This book reviews the research pertaining to nutrient requirements for working in cold or in high-altitude environments and states recommendations regarding the application of this information to military operational rations. It addresses whether, aside from increased energy demands, cold or high-altitude environments elicit an increased demand or requirement for specific nutrients, and whether performance in cold or high-altitude environments can be enhanced by the provision of increased amounts of specific nutrients.
This book comprehensively describes biological phenomena, adaptation mechanisms, and strategies of living organisms to survive under extremely cold or desiccated conditions at molecular, cellular, and organ levels. It also provides tremendous potential for applications of the findings to a wide variety of industries. The volume consists of three parts: Part 1, Adaptation Mechanisms of Cold, and Part 2, Adaptation Mechanisms of Desiccation, collect up-to-date research on mechanisms and strategies of living organisms such as sleeping chironomids, polar marine fishes, hibernating mammals, bryophytes, dormant seeds, and boreal plants to survive under extreme cold and desiccated conditions at molecular, cellular, and organ levels. Part 3, Application Technologies from Laboratory to Society, covers various applications to a wide variety of industries such as the medical, food, and agricultural and life science industries. For example, biological knowledge of how plants and animals survive under cold, drought, and desiccated conditions may provide a hint on how we can improve crop production in a very fragile environment in global climate change. Unique molecules that protect cells during desiccation and freezing such as trehalose and antifreeze protein (AFP) have potential for use to preserve cells, tissues, and organs for the long term under very stable conditions. In addition, the current progress of supercooling technology of cells may lead us to solve problems of cellular high sensitivity to freezing injury, which will dramatically improve the usability of these cells. Furthermore, knowledge of water substitution and glass formation as major mechanisms for formulation designs and new drying technologies will contribute to the development of food preservation and drug delivery systems under dry conditions. Written by contributors who have been conducting cutting-edge science in related fields, this title is recommended to a wide variety of readers who are interested in learning from such organisms their strategies, mechanisms, and applications, and it will inspire researchers in various disciplines.
Growing for 100 - the complete year-round guide for the small-scale market grower. Across North America, an agricultural renaissance is unfolding. A growing number of market gardeners are emerging to feed our appetite for organic, regional produce. But most of the available resources on food production are aimed at the backyard or hobby gardener who wants to supplement their family's diet with a few homegrown fruits and vegetables. Targeted at serious growers in every climate zone, Sustainable Market Farming is a comprehensive manual for small-scale farmers raising organic crops sustainably on a few acres. Informed by the author's extensive experience growing a wide variety of fresh, organic vegetables and fruit to feed the approximately one hundred members of Twin Oaks Community in central Virginia, this practical guide provides: Detailed profiles of a full range of crops, addressing sowing, cultivation, rotation, succession, common pests and diseases, and harvest and storage Information about new, efficient techniques, season extension, and disease resistant varieties Farm-specific business skills to help ensure a successful, profitable enterprise Whether you are a beginning market grower or an established enterprise seeking to improve your skills, Sustainable Market Farming is an invaluable resource and a timely book for the maturing local agriculture movement.
Explores some of the United States most severe or unusual weather systems, including electrified dust storms, pink snowstorms, luminous tornadoes, ball lightning, and falls of fish and toads.
There are only few human beings who can adapt, survive and thrive in the coldest regions on earth. And below a certain temperature, death is inevitable. Sir Ranulph Fiennes has spent much of his life exploring and working in conditions of extreme cold. The loss of many of his fingers to frostbite is a testament to the horrors man is exposed to at such perilous temperatures. With the many adventures he has led over the past 40 years, testing his limits of endurance to the maximum, he deservedly holds the title of 'the world's greatest explorer'. Despite our technological advances, the Arctic, the Antarctic and the highest mountains on earth, remain some of the most dangerous and unexplored areas of the world. This remarkable book reveals the chequered history of man's attempts to discover and understand these remote areas of the planet, from the early voyages of discovery of Cook, Ross, Weddell, Amundsen, Shackleton and Franklin to Sir Ranulph's own extraordinary feats; from his adventuring apprenticeship on the Greenland Ice Cap, to masterminding over the past five years the first crossing of the Antarctic during winter, where temperatures regularly plummeted to minus 92ºC. Both historically questioning and intensely personal, Cold is a celebration of a life dedicated to researching and exploring some of the most hostile and brutally cold places on earth.
As climate has warmed over recent years, a new pattern of more frequent and more intense weather events has unfolded across the globe. Climate models simulate such changes in extreme events, and some of the reasons for the changes are well understood. Warming increases the likelihood of extremely hot days and nights, favors increased atmospheric moisture that may result in more frequent heavy rainfall and snowfall, and leads to evaporation that can exacerbate droughts. Even with evidence of these broad trends, scientists cautioned in the past that individual weather events couldn't be attributed to climate change. Now, with advances in understanding the climate science behind extreme events and the science of extreme event attribution, such blanket statements may not be accurate. The relatively young science of extreme event attribution seeks to tease out the influence of human-cause climate change from other factors, such as natural sources of variability like El Niño, as contributors to individual extreme events. Event attribution can answer questions about how much climate change influenced the probability or intensity of a specific type of weather event. As event attribution capabilities improve, they could help inform choices about assessing and managing risk, and in guiding climate adaptation strategies. This report examines the current state of science of extreme weather attribution, and identifies ways to move the science forward to improve attribution capabilities.