Download Free Technology Requirements For Advanced Earth Orbital Transportation Systems Duel Mode Propulsion Book in PDF and EPUB Free Download. You can read online Technology Requirements For Advanced Earth Orbital Transportation Systems Duel Mode Propulsion and write the review.

The impact of dual-mode propulsion on cost-effective technology requirements for advanced earth-orbital transportation systems is considered. Additional objectives were to determine the advantages of the best dual mode concept relative to the LO2/LH2 concept of the basic study. Normal technology requirements applicable to horizontal take-off and landing single-stage-to-orbit systems utilizing dual mode rocket propulsion were projected to the 1985 time period. These technology projections were then incorporated in a vehicle parametric design analysis for two different operational concepts of a dual mode propulsion system. The resultant performance, weights and costs of each concept were compared. The selected propulsion concept was evaluated to confirm the parametric trending/scaling of weights and to optimize the configuration.
Normal technology requirements applicable to Single Stage to Orbit (SSTO) systems were projected to the 1985 time period. These technology projections were then incorporated in a vehicle design analysis of three different operational concepts resulting in four configurations of a Single Stage to Orbit system. The resultant performance, weights and costs of each concept were then compared and a system concept selected. A figure of merit was developed for advanced technology programs based on a cost/performance basis. The selected advanced technology programs were then used to reassess the vehicle to determine the impact on performance, weight and cost. Based on study results, recommendations are provided in technology areas associated with earth orbit transportation systems. The recommendations address advanced space transportation system design considerations, both hardware and software technolgoy program requirements.--V. I. The results of efforts to identify the technology requirements for advanced earth orbital transportation systems are reported. Topics discussed include: (1) design and definition of performance potential of vehicle systems, (2) advanced technology assessment, and (3) extended performance. It is concluded that the horizontal take-off concept is the most feasible system considered.--V. II.
The results of efforts to identify the technology requirements for advanced earth orbital transportation systems are reported. Topics discussed include: (1) design and definition of performance potential of vehicle systems, (2) advanced technology assessment, and (3) extended performance. It is concluded that the horizontal take-off concept is the most feasible system considered.
Technologies including accelerated technology that are critical to performance and/or provide cost advantages for future space transportation systems are identified. Mission models are scoped and include priority missions, and cargo missions. Summary data, providing primary design concepts and features, are given for the SSTO, HLLV, POTV, and LCOTV vehicles. Significant system costs and total system costs in terms of life cycle costs in both discounted and undiscounted dollars are summarized for each of the vehicles.