Download Free Technology Commercialization Process Handbook Book in PDF and EPUB Free Download. You can read online Technology Commercialization Process Handbook and write the review.

The definitive guide for scientific entrepreneurs commercializing sustainable technologies in the chemical sector Lacking the considerable resources of multinational chemical companies, entrepreneurs face a unique set of risks and challenges. How to Commercialize Chemical Technologies for a Sustainable Future is targeted at innovators who are embarking on the entrepreneurial path with their sustainable chemical technology but are unsure of what steps to take. This first-of-its-kind resource features contributions from a diverse team of expert authors, including engineers, venture capitalists, marketing specialists, intellectual property professionals, regulatory experts, industry practitioners, and many others. Accessible and highly practical, this real-world guide covers each step of the technology commercialization process, from market landscape analysis and financing to scale-up and strategic partnering. Throughout the book, effective tactics and strategies for growing a new venture are supported by case studies highlighting the economic and environmental impact of successful commercialization, and identifying the common mistakes that lead to lost opportunities. Filled with invaluable advice and actionable steps, this book: Uses valuation concepts, tools, and examples to demonstrate that for a chemical technology to be sustainable it must not only have market value but also confer benefits to human well-being and the environment Offers templates and tools for understanding what customers need, who the competition is and how to successfully differentiate your product to those customers Describes how to practically advance your technology from conception all the way to commercial demonstration Presents advantages and disadvantages of strategic partnering from the perspective of the start-up and the larger industrial partner, along with strategies to mitigate risks within a partnership Provides an overview of the legal regulatory requirements for bringing new chemicals to market in several key geographic regions, as well as the impact of public policy on commercialization Offers insights and practical strategies on intellectual property management, raising investment, and operationalizing a startup company How to Commercialize Chemical Technologies for a Sustainable Future is essential reading for budding entrepreneurs in chemistry, materials science, and chemical engineering looking to bring their sustainable technologies to market. It is also a valuable reference for investors, policymakers, regulators, and other professionals.
As an authoritative guide to biotechnology enterprise and entrepreneurship, Biotechnology Entrepreneurship and Management supports the international community in training the biotechnology leaders of tomorrow. Outlining fundamental concepts vital to graduate students and practitioners entering the biotech industry in management or in any entrepreneurial capacity, Biotechnology Entrepreneurship and Management provides tested strategies and hard-won lessons from a leading board of educators and practitioners. It provides a 'how-to' for individuals training at any level for the biotech industry, from macro to micro. Coverage ranges from the initial challenge of translating a technology idea into a working business case, through securing angel investment, and in managing all aspects of the result: business valuation, business development, partnering, biological manufacturing, FDA approvals and regulatory requirements. An engaging and user-friendly style is complemented by diverse diagrams, graphics and business flow charts with decision trees to support effective management and decision making. - Provides tested strategies and lessons in an engaging and user-friendly style supplemented by tailored pedagogy, training tips and overview sidebars - Case studies are interspersed throughout each chapter to support key concepts and best practices. - Enhanced by use of numerous detailed graphics, tables and flow charts
How much will it cost, how long will it take and is the technology ready to commercialize? These are the three most common questions received from founders, investors and employees looking to commercialize novel biotechnologies. This handbook provides industry insight and practical explanations of the commercialization process, including common pitfalls to avoid on the way to success. Mark Warner is a registered professional chemical engineer who started his career at Monsanto Chemical, turning waste pulp and paper byproducts into foods and chemicals. After spending a decade in large engineering firms, he joined an early-stage renewable energy venture and has not looked back. Mark leveraged the initial biofuels experience to hold executive level positions with industry names such as Impossible Foods, Solazyme, Harris Group and Imperium Renewables. Warner Advisors LLC was founded in 2015 with a mission of assisting early-stage biotechnology companies in commercializing their technologies. To date, Mark has consulted for over 40 industrial biotechnology ventures and is recognized as an expert in biotechnology commercialization.
Successful product design and development requires the ability to take a concept and translate the technology into useful, patentable, commercial products. This book guides the reader through the practical aspects of the commercialization process of drug, diagnostic and device biomedical technology including market analysis, product development, intellectual property and regulatory constraints. Key issues are highlighted at each stage in the process, and case studies are used to provide practical examples. The book will provide a sound road map for those involved in the biotechnology industry to effectively plan the commercialization of profitable regulated medical products. It will also be suitable for a capstone design course in engineering and biotechnology, providing the student with the business acumen skills involved in product development.
This book covers all aspects of physical vapor deposition (PVD) process technology from the characterizing and preparing the substrate material, through deposition processing and film characterization, to post-deposition processing. The emphasis of the book is on the aspects of the process flow that are critical to economical deposition of films that can meet the required performance specifications. The book covers subjects seldom treated in the literature: substrate characterization, adhesion, cleaning and the processing. The book also covers the widely discussed subjects of vacuum technology and the fundamentals of individual deposition processes. However, the author uniquely relates these topics to the practical issues that arise in PVD processing, such as contamination control and film growth effects, which are also rarely discussed in the literature. In bringing these subjects together in one book, the reader can understand the interrelationship between various aspects of the film deposition processing and the resulting film properties. The author draws upon his long experience with developing PVD processes and troubleshooting the processes in the manufacturing environment, to provide useful hints for not only avoiding problems, but also for solving problems when they arise. He uses actual experiences, called ""war stories"", to emphasize certain points. Special formatting of the text allows a reader who is already knowledgeable in the subject to scan through a section and find discussions that are of particular interest. The author has tried to make the subject index as useful as possible so that the reader can rapidly go to sections of particular interest. Extensive references allow the reader to pursue subjects in greater detail if desired. The book is intended to be both an introduction for those who are new to the field and a valuable resource to those already in the field. The discussion of transferring technology between R&D and manufacturing provided in Appendix 1, will be of special interest to the manager or engineer responsible for moving a PVD product and process from R&D into production. Appendix 2 has an extensive listing of periodical publications and professional societies that relate to PVD processing. The extensive Glossary of Terms and Acronyms provided in Appendix 3 will be of particular use to students and to those not fully conversant with the terminology of PVD processing or with the English language.
This handbook provides academics and students with a comprehensive and holistic understanding of the phenomenon of innovation.
Written by a plethora of expert contributors from a range of institutions, the Handbook of Technology Transfer provides an engaging deep-dive review of technology transfer as a complex and dynamic process, applying different mechanisms characterising activities in a variety of countries.
Applied Plastics Engineering Handbook: Processing, Materials, and Applications, Second Edition, covers both the polymer basics that are helpful to bring readers quickly up-to-speed if they are not familiar with a particular area of plastics processing and the recent developments that enable practitioners to discover which options best fit their requirements. New chapters added specifically cover polyamides, polyimides, and polyesters. Hot topics such as 3-D printing and smart plastics are also included, giving plastics engineers the information they need to take these embryonic technologies and deploy them in their own work. With the increasing demands for lightness and fuel economy in the automotive industry (not least due to CAFÉ standards), plastics will soon be used even further in vehicles. A new chapter has been added to cover the technology trends in this area, and the book has been substantially updated to reflect advancements in technology, regulations, and the commercialization of plastics in various areas. Recycling of plastics has been thoroughly revised to reflect ongoing developments in sustainability of plastics. Extrusion processing is constantly progressing, as have the elastomeric materials, fillers, and additives which are available. Throughout the book, the focus is on the engineering aspects of producing and using plastics. The properties of plastics are explained, along with techniques for testing, measuring, enhancing, and analyzing them. Practical introductions to both core topics and new developments make this work equally valuable for newly qualified plastics engineers seeking the practical rules-of-thumb they don't teach you in school and experienced practitioners evaluating new technologies or getting up-to-speed in a new field. - Presents an authoritative source of practical advice for engineers, providing guidance from experts that will lead to cost savings and process improvements - Ideal introduction for both new engineers and experienced practitioners entering a new field or evaluating a new technology - Updated to include the latest technology, including 3D Printing, smart polymers, and thorough coverage of biopolymers and biodegradable plastics
Universities are now in the business of managing intellectual property portfolios and commercializing discoveries from their laboratories. Much of the money universities make from this is in the form of licensing revenue and IPO-related wealth. However, managing intellectual-property portfolios is still a very new business for universities, and administrators and policymakers are still uncertain about how best to navigate the many practical and fundamental issues that arise. Written for both practitioners and academics, "The Chicago Handbook of University Technology Transfer and Academic Entrepreneurship "provides a clear outline of the broad set of new practices and institutions that have sprung up to manage and sell intellectual property, from university technology-transfer offices and cooperative-engineering research centers to vast research parks. To determine what makes technology transfer work, the question is approached from a variety of perspectives: historically, internationally, and from the perspectives of professors, entrepreneurs, administrators, and regulators. Some chapters offer guidelines and examples of how to foster and maintain successful research ventures from various perspectives. Others explore how developments in university technology transfer affect the public interest and inform the notion of open innovation and science. "