Download Free Technological Tools For Predicting Pregnancy Complications Book in PDF and EPUB Free Download. You can read online Technological Tools For Predicting Pregnancy Complications and write the review.

The lack of comprehensive, innovative insights into the intricate world of pregnancy complication prediction is a pressing concern, as these complications can severely impact the health and wellbeing of pregnant patients. As the complexities of maternal healthcare continue to evolve, scholars grapple with the challenge of staying at the forefront of research and innovation in this critical field. The unpredictability of pregnancy complications poses significant risks to positive patient outcomes, demanding novel approaches to diagnosis and prevention. The academic community seeks a solution that can bridge the gap between traditional research and the transformative potential of technological advancements in healthcare. Technological Tools for Predicting Pregnancy Complications not only identify the problem but offer an authoritative solution. It serves as a beacon of knowledge for academic scholars, providing a holistic exploration of how Artificial Intelligence (AI) and Machine Learning (ML) technologies can revolutionize maternal healthcare. With a laser focus on predictive models, comprehensive health data analysis, and innovative algorithmic approaches, this book equips scholars with the tools they need to navigate the ever-evolving landscape of pregnancy complications. Academic scholars will find a treasure trove of insights, spanning from the fundamentals of AI and ML in healthcare to the application of IoT devices and wearable sensors for expectant mothers.
Artificial intelligence models are being used to make labor and delivery safer for mothers and newborns. Sensors are exploited to gauge health parameters, and machine learning techniques are investigated to predict the health conditions of patients to assist medical practitioners. This is a critical area of study as maternal and infant health are indispensable for a healthy society. Predicting Pregnancy Complications Through Artificial Intelligence and Machine Learning considers the recent advances, challenges, and best practices of artificial intelligence and machine learning in relation to pregnancy complications. Covering key topics such as pregnancy complications, wearable sensors, and healthcare technologies, this premier reference source is ideal for nurses, doctors, computer scientists, medical professionals, industry professionals, researchers, academicians, scholars, instructors, and students.
The potential impact of work being conducted in genomics, proteomics, and metabolomics upon clinical practice for gynecologists is immense but not yet completely appreciated. This groundbreaking text from international experts examines the newest topics on the perinatal agenda and gives clinicians a real look into the future via the newest methodologies.
In the ever-evolving landscape of maternal healthcare, expectant mothers face a myriad of challenges, from pregnancy complications to postpartum care. Traditional approaches often fail to provide timely and personalized interventions, leading to suboptimal outcomes for both mother and child. The lack of practical tools and strategies to address these complexities underscores the pressing need for innovative solutions that can revolutionize maternal care. Modernizing Maternal Care With Digital Technologies leads the way, offering a comprehensive solution that harnesses the power of modern technology and soft computing techniques to foster environments that improve maternal patient outcomes. This pioneering book delves into the transformative role of artificial intelligence (AI), data analytics, and wearable devices in reshaping maternal care. The book presents a paradigm shift in how expectant mothers can be supported throughout their pregnancy journey by highlighting the significance of predictive modeling and real-time monitoring.
The book uniquely explores the fundamentals of blockchain and digital twin and their uses in smart hospitals. Artificial Intelligence-Enabled Blockchain Technology and Digital Twin for Smart Hospitals provides fundamental information on blockchain and digital twin technology as effective solutions in smart hospitals. Digital twin technology enables the creation of real-time virtual replicas of hospital assets and patients, enhancing predictive maintenance, operational efficiency, and patient care. Blockchain technology provides a secure and transparent platform for managing and sharing sensitive data, such as medical records and pharmaceutical supply chains. By combining these technologies, smart hospitals can ensure data security, interoperability, and streamlined operations while providing patient-centered care. The book also explores the impact of collected medical data from real-time systems in smart hospitals, and by making it accessible to all doctors via a smartphone or mobile device for fast decisions. Inevitable challenges such as privacy concerns and integration costs must, of course, be addressed. However, the potential benefits in terms of improved healthcare quality, reduced costs, and global health initiatives makes the integration of these technologies a compelling avenue for the future of healthcare. Some of the topics that readers will find in this book include: Wireless Medical Sensor Networks in Smart Hospitals ● DNA Computing in Cryptography ● Enhancing Diabetic Retinopathy and Glaucoma Diagnosis through Efficient Retinal Vessel Segmentation and Disease Classification ● Machine Learning-Enabled Digital Twins for Diagnostic And Therapeutic Purposes ● Blockchain as the Backbone of a Connected Ecosystem of Smart Hospitals ● Blockchain for Edge Association in Digital Twin Empowered 6G Networks ● Blockchain for Security and Privacy in Smart Healthcare ● Blockchain-Enabled Internet of Things (IoTs) Platforms for IoT-Based Healthcare and Biomedical Sector ● Electronic Health Records in a Blockchain ● PSO-Based Hybrid Cardiovascular Disease Prediction for Using Artificial Flora Algorithm ● AI and Transfer Learning Based Framework for Efficient Classification And Detection Of Lyme Disease ● Framework for Gender Detection Using Facial Countenances ● Smartphone-Based Sensors for Biomedical Applications ● Blockchain for Improving Security and Privacy in the Smart Sensor Network ● Sensors and Digital Twin Application in Healthcare Facilities Management ● Integration of Internet of Medical Things (IoMT) with Blockchain Technology to Improve Security and Privacy ● Machine Learning-Driven Digital Twins for Precise Brain Tumor and Breast Cancer Assessment ● Ethical and Technological Convergence: AI and Blockchain in Halal Healthcare ● Digital Twin Application in Healthcare Facilities Management ● Cloud-based Digital Twinning for Structural Health Monitoring Using Deep Learning. Audience The book will be read by hospital and healthcare providers, administrators, policymakers, scientists and engineers in artificial intelligence, information technology, electronics engineering, and related disciplines.
In the world of academia, scholars and researchers are confronted with a rapidly expanding knowledge base in Artificial Intelligence (AI) and nanotechnology. The integration of these two groundbreaking fields presents an intricate web of concepts, innovations, and interdisciplinary applications that can overwhelm even the most astute academic minds. Staying up to date with the latest developments and effectively navigating this complex terrain has become a pressing challenge for those striving to contribute meaningfully to these fields. Artificial Intelligence in the Age of Nanotechnology is a transformative solution meticulously crafted to address the academic community's knowledge gaps and challenges. This comprehensive book serves as the guiding light for scholars, researchers, and students grappling with the dynamic synergy between AI and Nanotechnology. It offers a structured and authoritative exploration of the core principles and transformative applications of these domains across diverse fields. By providing clarity and depth, it empowers academics to stay at the forefront of innovation and make informed contributions.
Traditional patient care and treatment approaches often lack the personalized and interactive elements necessary for effective healthcare delivery. This means that the healthcare industry must find innovative solutions to improve patient outcomes, enhance rehabilitation processes, and optimize resource utilization. There is a gap between the traditional approach and the need for innovation that highlights the importance of a comprehensive understanding of emerging technologies, including Kinect Sensor technology, and the potential to transform healthcare practices with this tech. Revolutionizing Healthcare Treatment With Sensor Technology addresses this critical need by thoroughly exploring how Kinect Sensor technology can revolutionize patient care and treatment methodologies. By repurposing and customizing Kinect Sensor for healthcare applications, this book showcases how depth-sensing cameras, infrared sensors, and advanced motion tracking can capture and interpret real-time patient movements and interactions. This book is ideal for healthcare professionals, hospital administrators, researchers, patients, caregivers, and healthcare technology developers seeking to leverage Kinect Sensor technology for enhanced healthcare delivery. Through detailed case studies and practical examples, experts can learn how to integrate Kinect Sensor into various medical settings to gain valuable insights into patients' physical capabilities, monitor their progress, and create personalized treatment plans.
The Handbook of Research on AI and ML for Intelligent Machines and Systems offers a comprehensive exploration of the pivotal role played by artificial intelligence (AI) and machine learning (ML) technologies in the development of intelligent machines. As the demand for intelligent machines continues to rise across various sectors, understanding the integration of these advanced technologies becomes paramount. While AI and ML have individually showcased their capabilities in developing robust intelligent machine systems and services, their fusion holds the key to propelling intelligent machines to a new realm of transformation. By compiling recent advancements in intelligent machines that rely on machine learning and deep learning technologies, this book serves as a vital resource for researchers, graduate students, PhD scholars, faculty members, scientists, and software developers. It offers valuable insights into the key concepts of AI and ML, covering essential security aspects, current trends, and often overlooked perspectives that are crucial for achieving comprehensive understanding. It not only explores the theoretical foundations of AI and ML but also provides guidance on applying these techniques to solve real-world problems. Unlike traditional texts, it offers flexibility through its distinctive module-based structure, allowing readers to follow their own learning paths.
Applications of Machine Learning in UAV Networks presents a pioneering exploration into the symbiotic relationship between machine learning techniques and UAVs. In an age where UAVs are revolutionizing sectors as diverse as agriculture, environmental preservation, security, and disaster response, this meticulously crafted volume offers an analysis of the manifold ways machine learning drives advancements in UAV network efficiency and efficacy. This book navigates through an expansive array of domains, each demarcating a pivotal application of machine learning in UAV networks. From the precision realm of agriculture and its dynamic role in yield prediction to the ecological sensitivity of biodiversity monitoring and habitat restoration, the contours of each domain are vividly etched. These explorations are not limited to the terrestrial sphere; rather, they extend to the pivotal aerial missions of wildlife conservation, forest fire monitoring, and security enhancement, where UAVs adorned with machine learning algorithms wield an instrumental role. Scholars and practitioners from fields as diverse as machine learning, UAV technology, robotics, and IoT networks will find themselves immersed in a confluence of interdisciplinary expertise. The book's pages cater equally to professionals entrenched in agriculture, environmental studies, disaster management, and beyond.
Women encounter multifaceted threats, ranging from personal safety hazards to discrimination deeply embedded in societal structures. The existing landscape demands innovative strategies to ensure women can participate fully in society without fear or impediment. Traditional systems often fall short, necessitating a paradigm shift in our approach to women's safety. Impact of AI on Advancing Women's Safety emerges as a groundbreaking solution to address the pervasive challenges they face. From the shadows of harassment to systemic biases in justice systems, women navigate a complex landscape. This book delves into the pressing issues, unveiling a visionary approach that leverages artificial intelligence to create tangible, transformative solutions.