Download Free Techniques In Glycobiology Book in PDF and EPUB Free Download. You can read online Techniques In Glycobiology and write the review.

Sugar chains (glycans) are often attached to proteins and lipids and have multiple roles in the organization and function of all organisms. "Essentials of Glycobiology" describes their biogenesis and function and offers a useful gateway to the understanding of glycans.
Sugar chains (glycans) are often attached to proteins and lipids and have multiple roles in the organization and function of all organisms. "Essentials of Glycobiology" describes their biogenesis and function and offers a useful gateway to the understanding of glycans.
This work covers methodologies for plant and animal glycoconjugate analysis. It details mass spectrometry, nuclear magnetic resonance spectroscopy, glycolipids and new physical methods, o-glycosylation characterization, chromophore and fluorophore labelling of oligosaccharides, separations, exoglycosidases and mapping, and plant glycobiology.
This volume provides a comprehensive understanding of the enigmatic identity of the glycome, a complex but important area of research that has been largely ignored due to its complexity. The authors thoroughly deal with almost all aspects of the glycome, i.e., elucidation of the glycan identity enigma and its role in regulation of the cellular process, and in disease etiology. The book bridges the knowledge gap in understanding the glycome, from being a cell signature to its applications in disease etiology. In addition, it details many of the major insights regarding the possible role of the glycome in various diseases as a therapeutic marker. The book systematically covers the major aspects of the glycome, including the significance of substituting the diverse monosaccharide units to glycoproteins, the role of glycans in disease pathologies, and the challenges and advances in glycobiology. The authors stress the significance and huge encoding power of carbohydrates as well as provide helpful insights in framing the bigger picture. The Glycome: Understanding the Diversity and Complexity of Glycobiology details state-of-the-art developments and emerging challenges of glycome biology, which are going to be key areas of future research, not only in the glycobiology field but also in pharmaceutics.
This book provides current glycoinformatics methods and protocols used to support the determination of carbohydrate structures in biological samples as well as carbohydrate structure databases, the interaction of carbohydrates with proteins, and theoretical and experimental methods to study their three-dimensional structure and dynamics. Glycoinformatics explores this recently emerged field, which has come into being in order to address the needs of encoding, storing, and analyzing carbohydrate ‘sequences’ and their taxonomy using computers. Written in the highly successful Methods in Molecular Biology series format, chapters contain the kind of detailed description and key implementation advice to ensure successful results. Authoritative and timely, Glycoinformatics demonstrates the progress that has been achieved in glycoinformatics, which indicates that it is no longer a niche subject covered by only a few scientists but is truly coming of age.
Structural Glycobiology covers the experimental, theoretical, and alternative technologies used in the study of the structural basis for the diverse biological roles of carbohydrates. The book overviews the application of specialized technologies to the study of carbohydrates in biology, reviews relevant and current research in the field, and is illustrated throughout by specific examples of how research investigations have yielded key structural and associated biological data on carbohydrates and glycolipids. In particular, the book focuses on: X-ray crystallography and small-angle scattering, NMR, and cryo-electron microscopy techniques Theoretical (modeling-based) approaches, such as molecular mechanics, molecular dynamics, free energy calculations, and carbohydrate docking Alternative techniques for yielding structural information on carbohydrates from complex biological samples Carbohydrates in medicine, specifically in areas that have been directly impacted by our understanding of the structural role of carbohydrates in immune recognition: cancer, organ transplantation, and infection
This book summarizes recent advances in antibody glycosylation research. Covering major topics relevant for immunoglobulin glycosylation - analytical methods, biosynthesis and regulation, modulation of effector functions - it provides new perspectives for research and development in the field of therapeutic antibodies, biomarkers, vaccinations, and immunotherapy. Glycans attached to both variable and constant regions of antibodies are known to affect the antibody conformation, stability, and effector functions. Although it focuses on immunoglobulin G (IgG), the most explored antibody in this context, and unravels the natural phenomena resulting from the mixture of IgG glycovariants present in the human body, the book also discusses other classes of human immunoglobulins, as well as immunoglobulins produced in other species and production systems. Further, it reviews the glycoanalytical methods applied to antibodies and addresses a range of less commonly explored topics, such as automatization and bioinformatics aspects of high-throughput antibody glycosylation analysis. Lastly, the book highlights application areas ranging from the ones already benefitting from antibody glycoengineering (such as monoclonal antibody production), to those still in the research stages (such as exploration of antibody glycosylation as a clinical or biological age biomarker), and the potential use of antibody glycosylation in the optimization of vaccine production and immunization protocols. Summarizing the current knowledge on the broad topic of antibody glycosylation and its therapeutic and biomarker potential, this book will appeal to a wide biomedical readership in academia and industry alike. Chapter 4 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
A new focus on glycoscience, a field that explores the structures and functions of sugars, promises great advances in areas as diverse as medicine, energy generation, and materials science, this report finds. Glycans-also known as carbohydrates, saccharides, or simply as sugars-play central roles in many biological processes and have properties useful in an array of applications. However, glycans have received little attention from the research community due to a lack of tools to probe their often complex structures and properties. Transforming Glycoscience: A Roadmap for the Future presents a roadmap for transforming glycoscience from a field dominated by specialists to a widely studied and integrated discipline, which could lead to a more complete understanding of glycans and help solve key challenges in diverse fields.
This book discusses glycobiology and various forms of human diseases. Topics covered include immunoglobulins, inflammation and glycosylation, the role and therapeutic significance of natural anti-glycan antibodies in malignancies and in normal and aberrant pregnancy, identifying urinary glycans as a possible method for the diagnosis of lysosomal st
In the past decade, there has been an explosion of progress in understanding the roles of carbohydrates in biological systems. This explosive progress was made with the efforts in determining the roles of carbohydrates in immunology, neurobiology and many other disciplines, examining each unique system and employing new technology. This volume represents the first of three in the Methods in Enzymology series, including Glycomics (vol. 416) and Functional Glycomics (vol. 417), dedicated to disseminating information on methods in determining the biological roles of carbohydrates. These books are designed to provide an introduction of new methods to a large variety of readers who would like to participate in and contribute to the advancement of glycobiology. The methods covered include structural analysis of carbohydrates, biological and chemical synthesis of carbohydrates, expression and determination of ligands for carbohydrate-binding proteins, gene expression profiling including micro array, and generation of gene knockout mice and their phenotype analyses.