Download Free Techniques In Discrete And Continuous Robust Systems Book in PDF and EPUB Free Download. You can read online Techniques In Discrete And Continuous Robust Systems and write the review.

"This book will be a useful reference to control engineers and researchers. The papers contained cover well the recent advances in the field of modern control theory."--IEEE Group Correspondence"This book will help all those researchers who valiantly try to keep abreast of what is new in the theory and practice of optimal control."--Control
Control and Dynamic Systems: Advances in Theory and Applications, Volume 50: Robust Control System Techniques and Applications, Part 1 of 2 is a two-volume sequence devoted to the issues and application of robust control systems techniques. This volume is composed of 10 chapters and begins with a presentation of the important techniques for dealing with conflicting design objectives in control systems. The subsequent chapters describe the robustness techniques of systems using differential-difference equations; the design of a wide class of robust nonlinear systems, the techniques for dealing with the problems resulting from the use of observers in robust systems design, and the effective techniques for the robust control on non-linear time varying of tracking control systems with uncertainties. These topics are followed by discussions of the effective techniques for the robust control on non-linear time varying of tracking control systems with uncertainties and for incorporating adaptive control techniques into a (non-adaptive) robust control design. Other chapters present techniques for achieving exponential and robust stability for a rather general class of nonlinear systems, techniques in modeling uncertain dynamics for robust control systems design, and techniques for the optimal synthesis of these systems. The last chapters provide a generalized eigenproblem solution for both singular and nonsingular system cases. These chapters also look into the stability robustness design for discrete-time systems. This book will be of value to process and systems engineers, designers, and researchers.
There is an increasing demand for dynamic systems to become more safe and reliable. This requirement extends beyond the normally accepted safety-critical systems of nuclear reactors and aircraft where safety is paramount important, to systems such as autonomous vehicles and fast railways where the system availability is vital. It is clear that fault diagnosis (including fault detection and isolation, FDI) has been becoming an important subject in modern control theory and practice. For example, the number of papers on FDI presented in many control-related conferences has been increasing steadily. The subject of fault detection and isolation continues to mature to an established field of research in control engineering. A large amount of knowledge on model-based fault diagnosis has been ac cumulated through the literature since the beginning of the 1970s. However, publications are scattered over many papers and a few edited books. Up to the end of 1997, there is no any book which presents the subject in an unified framework. The consequence of this is the lack of "common language", dif ferent researchers use different terminology. This problem has obstructed the progress of model-based FDI techniques and has been causing great concern in research community. Many survey papers have been published to tackle this problem. However, a book which presents the materials in a unified format and provides a comprehensive foundation of model-based FDI is urgently needed.
In recent years, new paradigms have emerged to replace-or augment-the traditional, mathematically based approaches to optimization. The most powerful of these are genetic algorithms (GA), inspired by natural selection, and genetic programming, an extension of GAs based on the optimization of symbolic codes. Robust Control Systems with Genetic Algorithms builds a bridge between genetic algorithms and the design of robust control systems. After laying a foundation in the basics of GAs and genetic programming, it demonstrates the power of these new tools for developing optimal robust controllers for linear control systems, optimal disturbance rejection controllers, and predictive and variable structure control. It also explores the application of hybrid approaches: how to enhance genetic algorithms and programming with fuzzy logic to design intelligent control systems. The authors consider a variety of applications, such as the optimal control of robotic manipulators, flexible links and jet engines, and illustrate a multi-objective, genetic algorithm approach to the design of robust controllers with a gasification plant case study. The authors are all masters in the field and clearly show the effectiveness of GA techniques. Their presentation is your first opportunity to fully explore this cutting-edge approach to robust optimal control system design and exploit its methods for your own applications.
Intelligent Control techniques are becoming important tools in both academia and industry. Methodologies developed in the field of soft-computing, such as neural networks, fuzzy systems and evolutionary computation, can lead to accommodation of more complex processes, improved performance and considerable time savings and cost reductions. Intelligent Control Systems using Computational Intellingence Techniques details the application of these tools to the field of control systems. Each chapter gives and overview of current approaches in the topic covered, with a set of the most important references in the field, and then details the author's approach, examining both the theory and practical applications.
Since the time our first book Fault Diagnosis in Dynamic Systems: The ory and Applications was published in 1989 by Prentice Hall, there has been a surge in interest in research and applications into reliable methods for diag nosing faults in complex systems. The first book sold more than 1,200 copies and has become the main text in fault diagnosis for dynamic systems. This book will follow on this excellent record by focusing on some of the advances in this subject, by introducing new concepts in research and new application topics. The work cannot provide an exhaustive discussion of all the recent research in fault diagnosis for dynamic systems, but nevertheless serves to sample some of the major issues. It has been valuable once again to have the co-operation of experts throughout the world working in industry, gov emment establishments and academic institutions in writing the individual chapters. Sometimes dynamical systems have associated numerical models available in state space or in frequency domain format. When model infor mation is available, the quantitative model-based approach to fault diagnosis can be taken, using the mathematical model to generate analytically redun dant alternatives to the measured signals. When this approach is used, it becomes important to try to understand the limitations of the mathematical models i. e. , the extent to which model parameter variations occur and the effect of changing the systems point of operation.
Non-monotonic Approach to Robust H8 Control of Multi-model Systems focuses on robust analysis and synthesis problems for multi-model systems based on the non-monotonic Lyapunov Functionals (LFs) approach that enlarges the stability region and improves control performance. By fully considering the diversity of switching laws, the multi-step time difference, the multi-step prediction, and the expansion of system dimension, the non-monotonic LF can be properly constructed. The focus of this book is placed on the H8 state feedback control, H8 filtering and H8 output feedback control for multi-model systems via a non-monotonic LF approach. The book's authors provide illustrative examples to show the feasibility and efficiency of the proposed methods, along with practical examples that demonstrate the effectiveness and potential of theoretical results.
First book to consider HVAC control in analytical depth Covers all new developments in HVAC control systems Looks at systems both in the UK and abroad Considers cutting edge technology and topics such as fuzzy logic
This book studies selected discrete-time flight control schemes for fixed-wing unmanned aerial vehicle (UAV) systems in the presence of system uncertainties, external disturbances and input saturation. The main contributions of this book for UAV systems are as follows: (i) the proposed integer-order discrete-time control schemes are based on the designed discrete-time disturbance observers (DTDOs) and the neural network (NN); and (ii) the fractional-order discrete-time control schemes are developed by using the fractional-order calculus theory, the NN and the DTDOs. The book offers readers a good understanding of how to establish discrete-time tracking control schemes for fixed-wing UAV systems subject to system uncertainties, external wind disturbances and input saturation. It represents a valuable reference guide for academic research on uncertain UAV systems, and can also support advanced / Ph.D. studies on control theory and engineering.
This book approaches the design of active vibration control systems from the perspective of today’s ideas of computer control. It formulates the various design problems encountered in the active management of vibration as control problems and searches for the most appropriate tools to solve them. The experimental validation of the solutions proposed on relevant tests benches is also addressed. To promote the widespread acceptance of these techniques, the presentation eliminates unnecessary theoretical developments (which can be found elsewhere) and focuses on algorithms and their use. The solutions proposed cannot be fully understood and creatively exploited without a clear understanding of the basic concepts and methods, so these are considered in depth. The focus is on enhancing motivations, algorithm presentation and experimental evaluation. MATLAB®routines, Simulink® diagrams and bench-test data are available for download and encourage easy assimilation of the experimental and exemplary material. Three major problems are addressed in the book: active damping to improve the performance of passive absorbers; adaptive feedback attenuation of single and multiple tonal vibrations; and feedforward and feedback attenuation of broad band vibrations. Adaptive and Robust Active Vibration Control will interest practising engineers and help them to acquire new concepts and techniques with good practical validation. It can be used as the basis for a course for graduate students in mechanical, mechatronics, industrial electronics, aerospace and naval engineering. Readers working in active noise control will also discover techniques with a high degree of cross-over potential for use in their field.