Download Free Techniques For Vision Based Human Computer Interaction Book in PDF and EPUB Free Download. You can read online Techniques For Vision Based Human Computer Interaction and write the review.

The need for natural and effective Human-Computer Interaction (HCI) is increasingly important due to the prevalence of computers in human activities. Computer vision and pattern recognition continue to play a dominant role in the HCI realm. However, computer vision methods often fail to become pervasive in the field due to the lack of real-time, robust algorithms, and novel and convincing applications. This state-of-the-art contributed volume is comprised of articles by prominent experts in computer vision, pattern recognition and HCI. It is the first published text to capture the latest research in this rapidly advancing field with exclusive focus on real-time algorithms and practical applications in diverse and numerous industries, and it outlines further challenges in these areas. Real-Time Vision for Human-Computer Interaction is an invaluable reference for HCI researchers in both academia and industry, and a useful supplement for advanced-level courses in HCI and Computer Vision.
In its early years, the field of computer vision was largely motivated by researchers seeking computational models of biological vision and solutions to practical problems in manufacturing, defense, and medicine. For the past two decades or so, there has been an increasing interest in computer vision as an input modality in the context of human-computer interaction. Such vision-based interaction can endow interactive systems with visual capabilities similar to those important to human-human interaction, in order to perceive non-verbal cues and incorporate this information in applications such as interactive gaming, visualization, art installations, intelligent agent interaction, and various kinds of command and control tasks. Enabling this kind of rich, visual and multimodal interaction requires interactive-time solutions to problems such as detecting and recognizing faces and facial expressions, determining a person's direction of gaze and focus of attention, tracking movement of the body, and recognizing various kinds of gestures. In building technologies for vision-based interaction, there are choices to be made as to the range of possible sensors employed (e.g., single camera, stereo rig, depth camera), the precision and granularity of the desired outputs, the mobility of the solution, usability issues, etc. Practical considerations dictate that there is not a one-size-fits-all solution to the variety of interaction scenarios; however, there are principles and methodological approaches common to a wide range of problems in the domain. While new sensors such as the Microsoft Kinect are having a major influence on the research and practice of vision-based interaction in various settings, they are just a starting point for continued progress in the area. In this book, we discuss the landscape of history, opportunities, and challenges in this area of vision-based interaction; we review the state-of-the-art and seminal works in detecting and recognizing the human body and its components; we explore both static and dynamic approaches to "looking at people" vision problems; and we place the computer vision work in the context of other modalities and multimodal applications. Readers should gain a thorough understanding of current and future possibilities of computer vision technologies in the context of human-computer interaction.
Leading scientists describe how advances in computer vision can change how we interact with computers.
This book constitutes the refereed proceedings of the International Workshop on Human-Computer Interaction, HCI/ECCV 2006. The 11 revised full papers presented were carefully reviewed and selected from 27 submissions. The papers address a wide range of theoretical and application issues in human-computer interaction ranging from face analysis, gesture and emotion recognition, and event detection to various applications in those fields.
Human-Computer Interaction (HCI) lies at the crossroads of many scienti?c areas including arti?cial intelligence, computer vision, face recognition, motion tracking, etc. In order for HCI systems to interact seamlessly with people, they need to understand their environment through vision and auditory input. Mo- over, HCI systems should learn how to adaptively respond depending on the situation. The goal of this workshop was to bring together researchers from the ?eld of computer vision whose work is related to human-computer interaction. The selected articles for this workshop address a wide range of theoretical and - plication issues in human-computer interaction ranging from human-robot - teraction, gesture recognition, and body tracking, to facial features analysis and human-computer interaction systems. This year 74 papers from 18 countries were submitted and 22 were accepted for presentation at the workshop after being reviewed by at least 3 members of the Program Committee. We had therefore a very competitive acceptance rate of less than 30% and as a consequence we had a very-high-quality workshop. Wewouldliketo thankallmembersofthe ProgramCommitteefor their help in ensuring the quality of the papers accepted for publication. We are grateful to Dr. Jian Wang for giving the keynote address. In addition, we wish to thank the organizers of the 10th IEEE International Conference on Computer Vision and our sponsors, University of Amsterdam, Leiden Institute of Advanced Computer Science, and the University of Illinois at Urbana-Champaign, for support in setting up our workshop.
Vision-based human-computer interaction means to use computer-vision technology for interaction of a user with a computer-based application. This idea has recently found particular interest of research. Among the many possibilities of implementing interaction, we focus on hand-based interaction, expressed by single hand postures, sequences of hand postures, and pointing. Two system architectures are presented which address different scenarios of interaction, and which establish the frame for several problems for which solutions are worked out. The system ZYKLOP treats hand gestures performed in a local environment, for example, on a limited area of the table-top. The goal with respect to this classical scenario is a more reliable system behaviour. Contributions concern color-based segmentation, forearm-hand separation as a precondition to more shape-based hand gesture classification, and classification of static and dynamic gestures. The ARGUS concept makes a first step towards the systematic analysis of hand gesture based interaction combined with pointing in a spatial environment with sensitive regions.Special topics addressed within the architectural framework of ARGUS include the recognition of details from the distance, compensation of varying illumination, changing orientation of the hand with respect to the cameras, estimation of pointing directions, and object recognition.
Traditionally, scientific fields have defined boundaries, and scientists work on research problems within those boundaries. However, from time to time those boundaries get shifted or blurred to evolve new fields. For instance, the original goal of computer vision was to understand a single image of a scene, by identifying objects, their structure, and spatial arrangements. This has been referred to as image understanding. Recently, computer vision has gradually been making the transition away from understanding single images to analyzing image sequences, or video understanding. Video understanding deals with understanding of video sequences, e. g. , recognition of gestures, activities, facial expressions, etc. The main shift in the classic paradigm has been from the recognition of static objects in the scene to motion-based recognition of actions and events. Video understanding has overlapping research problems with other fields, therefore blurring the fixed boundaries. Computer graphics, image processing, and video databases have obvious overlap with computer vision. The main goal of computer graphics is to gener ate and animate realistic looking images, and videos. Researchers in computer graphics are increasingly employing techniques from computer vision to gen erate the synthetic imagery. A good example of this is image-based rendering and modeling techniques, in which geometry, appearance, and lighting is de rived from real images using computer vision techniques. Here the shift is from synthesis to analysis followed by synthesis.
This book constitutes the thoroughly refereed post-proceedings of the 7th International Workshop on Gesture-Based Human-Computer Interaction and Simulation, GW 2007, held in Lisbon, Portugal, in May 2007. The 31 revised papers presented were carefully selected from 53 submissions. The papers are organized in topical sections on analysis and synthesis of gesture; theoretical aspects of gestural communication and interaction; vision-based gesture recognition; sign language processing; gesturing with tangible interfaces and in virtual and augmented reality; gesture for music and performing arts; gesture for therapy and rehabilitation; and gesture in Mobile computing and usability studies.
This four-volume set LNCS 6761-6764 constitutes the refereed proceedings of the 14th International Conference on Human-Computer Interaction, HCII 2011, held in Orlando, FL, USA in July 2011, jointly with 8 other thematically similar conferences. The revised papers presented were carefully reviewed and selected from numerous submissions. The papers accepted for presentation thoroughly cover the entire field of Human-Computer Interaction, addressing major advances in knowledge and effective use of computers in a variety of application areas. The papers of this volume are organized in topical sections on touch-based and haptic interaction, gaze and gesture-based interaction, voice, natural language and dialogue, novel interaction techniques and devices, and avatars and embodied interaction.