Download Free Teaching With Mathematical Argument Book in PDF and EPUB Free Download. You can read online Teaching With Mathematical Argument and write the review.

Argumentation leads to deeper understanding Many students' interest in mathematics fades as they are asked to solve seemingly endless disconnected problems. Despina Stylianou and Maria Blanton show how building daily instruction around mathematical argumentation can enliven your classroom and re-engage your students. Teaching with Mathematical Argument explores how argumentation-discussing and debating a rich mathematical problem-provides all students a deeper understanding of mathematics. You'll find guidance for: understanding what argumentation is and building a classroom culture that supports it engaging every student in argumentation, not just "strong" or "high performing" students assessing your students' arguments and designing instruction responsive to their learning. The potential to transform student engagement At its core, argumentation helps students delve deeply into foundational mathematical concepts, enhancing their understanding and confidence along the way. Research shows that this type of instruction has the potential to transform student engagement and success in mathematics, and so Despina and Maria argue that mathematical arguments should have a far more central role in teaching and learning than most of us have ever considered. With ideas for structuring discussions and suggested tasks to try, this book will show you how to elevate argumentation in your instruction and harness its power for enhancing student learning.
This research-based book brings tough Standards for Mathematical Practice 3 standards for mathematical argumentation and critical reasoning alive - all within a thoroughly explained four-part model that covers generating cases, conjecturing, justifying, and concluding.
If you ask students, "Why does that work?" do they know what you're asking and do you know what to listen for in their responses? Do you have images of what mathematical argument looks like in the elementary grades and how to help students learn to engage in this important practice? Do you have so much content to cover that finding time for this kind of work is difficult? But Why Does It Work? offers a simple, efficient teaching model focused on mathematical argument for developing the ability of students to justify their thinking and engage with the reasoning of others. Designed for individuals as well as study groups, this book includes access to classroom-ready instructional sequences, each built on a model supporting students in: noticing relationships across sets of problems, equations, or expressions articulating a claim about what they notice investigating their claim through representations such as manipulatives, diagrams, or story contexts using their representations to demonstrate why a claim must be true or not extending their thinking from one operation to another. Establishing a classroom culture where students gain confidence in their own mathematical voice and learn to value the contributions of their peers is a critical part of this work. The authors tell us, "If the idea underlying a student's reasoning is not made explicit, the opportunity for all students to engage in such thinking is lost." As students become a true community of mathematicians, they heighten each other's understanding by investigating questions, conjectures, and examples together. Enhanced with extensive video showing the instructional sequences in action-along with guiding focus questions and math investigations-But Why Does It Work? is a flexible approach that will help students confidently articulate and defend their reasoning, and share their deep thinking with others.
Unique, effective system for teaching mathematical reasoning leads students toward clearly false conclusions. Students then analyze problems to correct the errors. Covers arithmetic, algebra, geometry, trigonometry, and approximate computations. 1963 edition.
Teaching our children to think and reason mathematically is a challenge, not because students can't learn to think mathematically, but because we must change our own often deeply-rooted teaching habits. This is where instructional routines come in. Their predictable design and repeatable nature support both teachers and students to develop new habits. In Teaching for Thinking, Grace Kelemanik and Amy Lucenta pick up where their first book, Routines for Reasoning, left off. They draw on their years of experience in the classroom and as instructional coaches to examine how educators can make use of routines to make three fundamental shifts in teaching practice: Focus on thinking: Shift attention away from students' answers and toward their thinking and reasoning Step out of the middle: Shift the balance from teacher-student interactions toward student-student interactions Support productive struggle: Help students do the hard thinking work that leads to real learning With three complete new routines, support for designing your own routine, and ideas for using routines in your professional learning as well as in your classroom teaching, Teaching for Thinking will help you build new teaching habits that will support all your students to become and see themselves as capable mathematicians.
The Encyclopedia of Mathematics Education is a comprehensive reference text, covering every topic in the field with entries ranging from short descriptions to much longer pieces where the topic warrants more elaboration. The entries provide access to theories and to research in the area and refer to the leading publications for further reading. The Encyclopedia is aimed at graduate students, researchers, curriculum developers, policy makers, and others with interests in the field of mathematics education. It is planned to be 700 pages in length in its hard copy form but the text will subsequently be up-dated and developed on-line in a way that retains the integrity of the ideas, the responsibility for which will be in the hands of the Editor-in-Chief and the Editorial Board. This second edition will include additional entries on: new ideas in the politics of mathematics education, working with minority students, mathematics and art, other cross-disciplinary studies, studies in emotions and mathematics, new frameworks for analysis of mathematics classrooms, and using simulations in mathematics teacher education. Existing entries will be revised and new entries written. Members of the international mathematics education research community will be invited to propose new entries. Editorial Board: Bharath Sriraman Melony Graven Yoshinori Shimizu Ruhama Even Michele Artigue Eva Jablonka Wish to Become an Author? Springer's Encyclopedia of Mathematics Education's first edition was published in 2014. The Encyclopedia is a "living" project and will continue to accept articles online as part of an eventual second edition. Articles will be peer-reviewed in a timely manner and, if found acceptable, will be immediately published online. Suggested articles are, of course, welcome. Feel encouraged to think about additional topics that we overlooked the first time around, and to suggest colleagues (including yourself!) who will want to write them. Interested new authors should contact the editor in chief, Stephen Lerman, at [email protected], for more specific instructions.
In this revolutionary book, a renowned computer scientist explains the importance of teaching children the basics of computing and how it can prepare them to succeed in the ever-evolving tech world. Computers have completely changed the way we teach children. We have Mindstorms to thank for that. In this book, pioneering computer scientist Seymour Papert uses the invention of LOGO, the first child-friendly programming language, to make the case for the value of teaching children with computers. Papert argues that children are more than capable of mastering computers, and that teaching computational processes like de-bugging in the classroom can change the way we learn everything else. He also shows that schools saturated with technology can actually improve socialization and interaction among students and between students and teachers. Technology changes every day, but the basic ways that computers can help us learn remain. For thousands of teachers and parents who have sought creative ways to help children learn with computers, Mindstorms is their bible.
Routines can keep your classroom running smoothly. Now imagine having a set of routines focused not on classroom management, but on helping students develop their mathematical thinking skills. Routines for Reasoning provides expert guidance for weaving the Standards for Mathematical Practice into your teaching by harnessing the power of classroom-tested instructional routines. Grace Kelemanik, Amy Lucenta, and Susan Janssen Creighton have applied their extensive experience teaching mathematics and supporting teachers to crafting routines that are practical teaching and learning tools. -- Provided by publisher.
In Up for Debate!: Exploring Math Through Argument, high school math teacher and debate coach Chris Luzniak shares stories, examples, and step-by-step routines that will help you build a classroom culture where students do the talking, explain their thinking, and critique each other's reasoning, all in the context of the math content you're expected to teach. Inside, you'll find: Inspirational stories of students debating math in real classrooms Concrete structures and routines that will get your students talking, listening, and debating Specific techniques you can use to transform existing math problems into debatable ones You'll begin with short speaking and listening routines that take just a few minutes to introduce. When you and your students are ready, you can layer on additional debate routines, until your class is engaged in full-class debates using mathematical reasoning. With this easy-to-read guide, you don't need to wait any longer. You will be able to start debating in your classroom, tomorrow.
A New York Times–bestselling author looks at mathematics education in America—when it’s worthwhile, and when it’s not. Why do we inflict a full menu of mathematics—algebra, geometry, trigonometry, even calculus—on all young Americans, regardless of their interests or aptitudes? While Andrew Hacker has been a professor of mathematics himself, and extols the glories of the subject, he also questions some widely held assumptions in this thought-provoking and practical-minded book. Does advanced math really broaden our minds? Is mastery of azimuths and asymptotes needed for success in most jobs? Should the entire Common Core syllabus be required of every student? Hacker worries that our nation’s current frenzied emphasis on STEM is diverting attention from other pursuits and even subverting the spirit of the country. Here, he shows how mandating math for everyone prevents other talents from being developed and acts as an irrational barrier to graduation and careers. He proposes alternatives, including teaching facility with figures, quantitative reasoning, and understanding statistics. Expanding upon the author’s viral New York Times op-ed, The Math Myth is sure to spark a heated and needed national conversation—not just about mathematics but about the kind of people and society we want to be. “Hacker’s accessible arguments offer plenty to think about and should serve as a clarion call to students, parents, and educators who decry the one-size-fits-all approach to schooling.” —Publishers Weekly, starred review