Download Free Teaching With Mathematical Argument Book in PDF and EPUB Free Download. You can read online Teaching With Mathematical Argument and write the review.

Argumentation leads to deeper understanding Many students' interest in mathematics fades as they are asked to solve seemingly endless disconnected problems. Despina Stylianou and Maria Blanton show how building daily instruction around mathematical argumentation can enliven your classroom and re-engage your students. Teaching with Mathematical Argument explores how argumentation-discussing and debating a rich mathematical problem-provides all students a deeper understanding of mathematics. You'll find guidance for: understanding what argumentation is and building a classroom culture that supports it engaging every student in argumentation, not just "strong" or "high performing" students assessing your students' arguments and designing instruction responsive to their learning. The potential to transform student engagement At its core, argumentation helps students delve deeply into foundational mathematical concepts, enhancing their understanding and confidence along the way. Research shows that this type of instruction has the potential to transform student engagement and success in mathematics, and so Despina and Maria argue that mathematical arguments should have a far more central role in teaching and learning than most of us have ever considered. With ideas for structuring discussions and suggested tasks to try, this book will show you how to elevate argumentation in your instruction and harness its power for enhancing student learning.
If you ask students, "Why does that work?" do they know what you're asking and do you know what to listen for in their responses? Do you have images of what mathematical argument looks like in the elementary grades and how to help students learn to engage in this important practice? Do you have so much content to cover that finding time for this kind of work is difficult? But Why Does It Work? offers a simple, efficient teaching model focused on mathematical argument for developing the ability of students to justify their thinking and engage with the reasoning of others. Designed for individuals as well as study groups, this book includes access to classroom-ready instructional sequences, each built on a model supporting students in: noticing relationships across sets of problems, equations, or expressions articulating a claim about what they notice investigating their claim through representations such as manipulatives, diagrams, or story contexts using their representations to demonstrate why a claim must be true or not extending their thinking from one operation to another. Establishing a classroom culture where students gain confidence in their own mathematical voice and learn to value the contributions of their peers is a critical part of this work. The authors tell us, "If the idea underlying a student's reasoning is not made explicit, the opportunity for all students to engage in such thinking is lost." As students become a true community of mathematicians, they heighten each other's understanding by investigating questions, conjectures, and examples together. Enhanced with extensive video showing the instructional sequences in action-along with guiding focus questions and math investigations-But Why Does It Work? is a flexible approach that will help students confidently articulate and defend their reasoning, and share their deep thinking with others.
This research-based book brings tough Standards for Mathematical Practice 3 standards for mathematical argumentation and critical reasoning alive - all within a thoroughly explained four-part model that covers generating cases, conjecturing, justifying, and concluding.
Unique, effective system for teaching mathematical reasoning leads students toward clearly false conclusions. Students then analyze problems to correct the errors. Covers arithmetic, algebra, geometry, trigonometry, and approximate computations. 1963 edition.
Teaching our children to think and reason mathematically is a challenge, not because students can't learn to think mathematically, but because we must change our own often deeply-rooted teaching habits. This is where instructional routines come in. Their predictable design and repeatable nature support both teachers and students to develop new habits. In Teaching for Thinking, Grace Kelemanik and Amy Lucenta pick up where their first book, Routines for Reasoning, left off. They draw on their years of experience in the classroom and as instructional coaches to examine how educators can make use of routines to make three fundamental shifts in teaching practice: Focus on thinking: Shift attention away from students' answers and toward their thinking and reasoning Step out of the middle: Shift the balance from teacher-student interactions toward student-student interactions Support productive struggle: Help students do the hard thinking work that leads to real learning With three complete new routines, support for designing your own routine, and ideas for using routines in your professional learning as well as in your classroom teaching, Teaching for Thinking will help you build new teaching habits that will support all your students to become and see themselves as capable mathematicians.
In this revolutionary book, a renowned computer scientist explains the importance of teaching children the basics of computing and how it can prepare them to succeed in the ever-evolving tech world. Computers have completely changed the way we teach children. We have Mindstorms to thank for that. In this book, pioneering computer scientist Seymour Papert uses the invention of LOGO, the first child-friendly programming language, to make the case for the value of teaching children with computers. Papert argues that children are more than capable of mastering computers, and that teaching computational processes like de-bugging in the classroom can change the way we learn everything else. He also shows that schools saturated with technology can actually improve socialization and interaction among students and between students and teachers. Technology changes every day, but the basic ways that computers can help us learn remain. For thousands of teachers and parents who have sought creative ways to help children learn with computers, Mindstorms is their bible.
The Encyclopedia of Mathematics Education is a comprehensive reference text, covering every topic in the field with entries ranging from short descriptions to much longer pieces where the topic warrants more elaboration. The entries provide access to theories and to research in the area and refer to the leading publications for further reading. The Encyclopedia is aimed at graduate students, researchers, curriculum developers, policy makers, and others with interests in the field of mathematics education. It is planned to be 700 pages in length in its hard copy form but the text will subsequently be up-dated and developed on-line in a way that retains the integrity of the ideas, the responsibility for which will be in the hands of the Editor-in-Chief and the Editorial Board. This second edition will include additional entries on: new ideas in the politics of mathematics education, working with minority students, mathematics and art, other cross-disciplinary studies, studies in emotions and mathematics, new frameworks for analysis of mathematics classrooms, and using simulations in mathematics teacher education. Existing entries will be revised and new entries written. Members of the international mathematics education research community will be invited to propose new entries. Editorial Board: Bharath Sriraman Melony Graven Yoshinori Shimizu Ruhama Even Michele Artigue Eva Jablonka Wish to Become an Author? Springer's Encyclopedia of Mathematics Education's first edition was published in 2014. The Encyclopedia is a "living" project and will continue to accept articles online as part of an eventual second edition. Articles will be peer-reviewed in a timely manner and, if found acceptable, will be immediately published online. Suggested articles are, of course, welcome. Feel encouraged to think about additional topics that we overlooked the first time around, and to suggest colleagues (including yourself!) who will want to write them. Interested new authors should contact the editor in chief, Stephen Lerman, at [email protected], for more specific instructions.
Ask mathematicians to describe mathematics and they' ll use words like playful, beautiful, and creative. Pose the same question to students and many will use words like boring, useless, and even humiliating. Becoming the Math Teacher You Wish You' d Had, author Tracy Zager helps teachers close this gap by making math class more like mathematics. Zager has spent years working with highly skilled math teachers in a diverse range of settings and grades and has compiled those' ideas from these vibrant classrooms into' this game-changing book. Inside you' ll find: ' How to Teach Student-Centered Mathematics:' Zager outlines a problem-solving approach to mathematics for elementary and middle school educators looking for new ways to inspire student learning Big Ideas, Practical Application:' This math book contains dozens of practical and accessible teaching techniques that focus on fundamental math concepts, including strategies that simulate connection of big ideas; rich tasks that encourage students to wonder, generalize, hypothesize, and persevere; and routines to teach students how to collaborate Key Topics for Elementary and Middle School Teachers:' Becoming the Math Teacher You Wish You' d Had' offers fresh perspectives on common challenges, from formative assessment to classroom management for elementary and middle school teachers No matter what level of math class you teach, Zager will coach you along chapter by chapter. All teachers can move towards increasingly authentic and delightful mathematics teaching and learning. This important book helps develop instructional techniques that will make the math classes we teach so much better than the math classes we took.
Routines can keep your classroom running smoothly. Now imagine having a set of routines focused not on classroom management, but on helping students develop their mathematical thinking skills. Routines for Reasoning provides expert guidance for weaving the Standards for Mathematical Practice into your teaching by harnessing the power of classroom-tested instructional routines. Grace Kelemanik, Amy Lucenta, and Susan Janssen Creighton have applied their extensive experience teaching mathematics and supporting teachers to crafting routines that are practical teaching and learning tools. -- Provided by publisher.
Talking and writing about unfinished ideas is vital to learning mathematics, but most students only speak up when they think they have the right answer - especially middle school and high school students. Amanda Jansen and her collaborating teachers have developed a breakthrough approach to address this challenge. In Rough Draft Math: Revising to Learn, Jansen shares the power of infusing math class with the spirit of revision so that students feel comfortable thinking aloud as they problem-solve rather than talking only to perform right answers. Creating a Community of Learners: As part of the rough draft framework, a class of students becomes an equitable and inclusive community of thinkers, one where students feel safe to engage in discourse while developing mathematical competency and confidence Practical Application of Innovative Ideas: This book includes specific teaching techniques and a range of classroom vignettes showing rough draft math in action within a student-centered teaching approach. Children can develop solutions at their own pace and share thought processes behind their conclusions Classroom Tested: Jansen has developed the concept of rough draft math in collaboration with a diverse group of dynamic and reflective teachers. Rough Draft Math provides a blueprint for educators to allow free-thinking discussion while maintaining the mathematical learning goalsRough Draft Math, Jansen shows how to create an energetic classroom culture where students readily participate and share their evolving understanding while engaging in math talk, collaborative problem solving, and ongoing revision of ideas. '