Download Free Teaching Physics Book in PDF and EPUB Free Download. You can read online Teaching Physics and write the review.

The Big Ideas in Physics and How to Teach Them provides all of the knowledge and skills you need to teach physics effectively at secondary level. Each chapter provides the historical narrative behind a Big Idea, explaining its significance, the key figures behind it, and its place in scientific history. Accompanied by detailed ready-to-use lesson plans and classroom activities, the book expertly fuses the ‘what to teach’ and the ‘how to teach it', creating an invaluable resource which contains not only a thorough explanation of physics, but also the applied pedagogy to ensure its effective translation to students in the classroom. Including a wide range of teaching strategies, archetypal assessment questions and model answers, the book tackles misconceptions and offers succinct and simple explanations of complex topics. Each of the five big ideas in physics are covered in detail: electricity forces energy particles the universe. Aimed at new and trainee physics teachers, particularly non-specialists, this book provides the knowledge and skills you need to teach physics successfully at secondary level, and will inject new life into your physics teaching.
Written by one of the leaders of the Physics Education Research (PER) movement, Teaching Physics is a book for anyone interested in learning how to become a more effective physics teacher. Rather than reviewing specific topics in physics with hints for how to teach them and lists of common student difficulties, Teaching Physics presents a variety of tools for improving both the teaching and learning of physics--from new kinds of homework and exam problems, to surveys for figuring out what has happened in your class, to tools for taking and analyzing data using computers and video. Teaching Physics is a companion guide to using the Physics Suite, an integrated collection of research-based instructional materials for lecture, laboratory, recitation, and workshop/studio environments. But even if you don't use a single element from the Suite, Teaching Physics can help you enhance your students' learning experience.
Physics Teaching and Learning: Challenging the Paradigm, RISE Volume 8, focuses on research contributions challenging the basic assumptions, ways of thinking, and practices commonly accepted in physics education. Teaching physics involves multifaceted, research-based, value added strategies designed to improve academic engagement and depth of learning. In this volume, researchers, teaching and curriculum reformers, and reform implementers discuss a range of important issues. The volume should be considered as a first step in thinking through what physics teaching and physics learning might address in teacher preparation programs, in-service professional development programs, and in classrooms. To facilitate thinking about research-based physics teaching and learning each chapter in the volume was organized around five common elements: 1. A significant review of research in the issue or problem area. 2. Themes addressed are relevant for the teaching and learning of K-16 science 3. Discussion of original research by the author(s) addressing the major theme of the chapter. 4. Bridge gaps between theory and practice and/or research and practice. 5. Concerns and needs are addressed of school/community context stakeholders including students, teachers, parents, administrators, and community members.
This reissued version of the classic text Basic Physics will help teachers at both the high-school and college levels gain new insights into, and deeper understanding of, many topics in both classical and modern physics that are commonly taught in introductory physics courses. All of the original book is included with new content added. Short sections of the previous book (174 in number) are labeled 'Features.' These Features are highlighted in the book, set forth in a separate Table of Contents, and separately indexed.Many teachers will value this book as a personal reference during a teaching year as various topics are addressed. Ford's discussions of the history and meaning of topics from Newton's mechanics to Feynman's diagrams, although written first in 1968, have beautifully withstood the test of time and are fully relevant to 21st-century physics teaching.
In our world today, scientists and technologists speak one language of reality. Everyone else, whether they be prime ministers, lawyers, or primary school teachers speak an outdated Newtonian language of reality. While Newton saw time and space as rigid and absolute, Einstein showed that time is relative – it depends on height and velocity – and that space can stretch and distort. The modern Einsteinian perspective represents a significant paradigm shift compared with the Newtonian paradigm that underpins most of the school education today. Research has shown that young learners quickly access and accept Einsteinian concepts and the modern language of reality. Students enjoy learning about curved space, photons, gravitational waves, and time dilation; often, they ask for more! A consistent education within the Einsteinian paradigm requires rethinking of science education across the entire school curriculum, and this is now attracting attention around the world. This book brings together a coherent set of chapters written by leading experts in the field of Einsteinian physics education. The book begins by exploring the fundamental concepts of space, time, light, and gravity and how teachers can introduce these topics at an early age. A radical change in the curriculum requires new learning instruments and innovative instructional approaches. Throughout the book, the authors emphasise and discuss evidence-based approaches to Einsteinian concepts, including computer- based tools, geometrical methods, models and analogies, and simplified mathematical treatments. Teaching Einsteinian Physics in Schools is designed as a resource for teacher education students, primary and secondary science teachers, and for anyone interested in a scientifically accurate description of physical reality at a level appropriate for school education.
This book is an invaluable resource for physics teachers. It contains an updated version of the author's A Guide to Introductory Physics Teaching (1990), Homework and Test Questions (1994), and a previously unpublished monograph "Introduction to Classical Conservation Laws."
Activity resource book teaching scientific principles in a vivid way with Lego, balloons etc.
This widely admired standalone guide is packed with creative tips on how to enhance and expand your physics class instruction techniques. It's an invaluable companion for novice and veteran professors teaching any physics course.
“YOU HAVE CHANGED MY LIFE” is a common refrain in the emails Walter Lewin receives daily from fans who have been enthralled by his world-famous video lectures about the wonders of physics. “I walk with a new spring in my step and I look at life through physics-colored eyes,” wrote one such fan. When Lewin’s lectures were made available online, he became an instant YouTube celebrity, and The New York Times declared, “Walter Lewin delivers his lectures with the panache of Julia Child bringing French cooking to amateurs and the zany theatricality of YouTube’s greatest hits.” For more than thirty years as a beloved professor at the Massachusetts Institute of Technology, Lewin honed his singular craft of making physics not only accessible but truly fun, whether putting his head in the path of a wrecking ball, supercharging himself with three hundred thousand volts of electricity, or demonstrating why the sky is blue and why clouds are white. Now, as Carl Sagan did for astronomy and Brian Green did for cosmology, Lewin takes readers on a marvelous journey in For the Love of Physics, opening our eyes as never before to the amazing beauty and power with which physics can reveal the hidden workings of the world all around us. “I introduce people to their own world,” writes Lewin, “the world they live in and are familiar with but don’t approach like a physicist—yet.” Could it be true that we are shorter standing up than lying down? Why can we snorkel no deeper than about one foot below the surface? Why are the colors of a rainbow always in the same order, and would it be possible to put our hand out and touch one? Whether introducing why the air smells so fresh after a lightning storm, why we briefly lose (and gain) weight when we ride in an elevator, or what the big bang would have sounded like had anyone existed to hear it, Lewin never ceases to surprise and delight with the extraordinary ability of physics to answer even the most elusive questions. Recounting his own exciting discoveries as a pioneer in the field of X-ray astronomy—arriving at MIT right at the start of an astonishing revolution in astronomy—he also brings to life the power of physics to reach into the vastness of space and unveil exotic uncharted territories, from the marvels of a supernova explosion in the Large Magellanic Cloud to the unseeable depths of black holes. “For me,” Lewin writes, “physics is a way of seeing—the spectacular and the mundane, the immense and the minute—as a beautiful, thrillingly interwoven whole.” His wonderfully inventive and vivid ways of introducing us to the revelations of physics impart to us a new appreciation of the remarkable beauty and intricate harmonies of the forces that govern our lives.
This book discusses novel research on and practices in the field of physics teaching and learning. It gathers selected high-quality studies that were presented at the GIREP-ICPE-EPEC 2017 conference, which was jointly organised by the International Research Group on Physics Teaching (GIREP); European Physical Society – Physics Education Division, and the Physics Education Commission of the International Union of Pure and Applied Physics (IUPAP). The respective chapters address a wide variety of topics and approaches, pursued in various contexts and settings, all of which represent valuable contributions to the field of physics education research. Examples include the design of curricula and strategies to develop student competencies—including knowledge, skills, attitudes and values; workshop approaches to teacher education; and pedagogical strategies used to engage and motivate students. This book shares essential insights into current research on physics education and will be of interest to physics teachers, teacher educators and physics education researchers around the world who are working to combine research and practice in physics teaching and learning.