Download Free Teaching Mathematics To All Children Book in PDF and EPUB Free Download. You can read online Teaching Mathematics To All Children and write the review.

With the composition of today's classroom in mind, this book approaches teaching and planning elementary mathematics by using methods that accommodate the diverse learning needs of any student having difficulties with basic math concepts. The authors use personal experience and research that supports a complete set of developmental concepts and skills to outline the effective development of mathematical concepts and skills. It stresses lesson planning that will result in learning, understanding, and retaining important concepts and skills. K-12 Special Education and General Education Teachers.
Teaching Young Children Mathematics provides a comprehensive overview of mathematics instruction in the early childhood classroom. Taking into account family differences, language barriers, and the presence of special needs students in many classrooms throughout the U.S., this textbook situates best practices for mathematics instruction within the larger frameworks of federal and state standards as well as contemporary understandings of child development. Key topics covered include: developmental information of conceptual understanding in mathematics from birth through 3rd grade, use of national and state standards in math, including the new Common Core State Standards, information for adapting ideas to meet special needs and English Language Learners, literacy connections in each chapter, ‘real-world’ connections to the content, and information for family connections to the content.
Tap into the Power of Child-Led Math Teaching and Learning Everything a child does has mathematical value--these words are at the heart of this completely revised and updated third edition of The Young Child and Mathematics. Grounded in current research, this classic book focuses on how teachers working with children ages 3 to 6 can find and build on the math inherent in children's ideas in ways that are playful and intentional. This resource - Illustrates through detailed vignettes how math concepts can be explored in planned learning experiences as well as informal spaces - Highlights in-the-moment instructional decision-making and child-teacher interactions that meaningfully and dynamically support children in making math connections - Provides an overview of what children know about counting and operations, spatial relations, measurement and data, and patterns and algebra - Offers examples of informal documentation and assessment approaches that are embedded within classroom practice Deepen your understanding of how math is an integral part of your classroom all day, every day. Includes online video!
Using strengths-based approaches to support development in mathematics It’s time to re-imagine what’s possible and celebrate the brilliance multilingual learners bring to today’s classrooms. Innovative teaching strategies can position these learners as leaders in mathematics. Yet, as the number of multilingual learners in North American schools grows, many teachers have not had opportunities to gain the competencies required to teach these learners effectively, especially in disciplines such as mathematics. Multilingual learners—historically called English Language Learners—are expected to interpret the meaning of problems, analyze, make conjectures, evaluate their progress, and discuss and understand their own approaches and the approaches of their peers in mathematics classrooms. Thus, language plays a vital role in mathematics learning, and demonstrating these competencies in a second (or third) language is a challenging endeavor. Based on best practices and the authors’ years of research, this guide offers practical approaches that equip grades K-8 teachers to draw on the strengths of multilingual learners, partner with their families, and position these learners for success. Readers will find: • A focus on multilingual students as leaders • A strength-based approach that draws on students’ life experiences and cultural backgrounds • An emphasis on maintaining high expectations for learners’ capacity for mastering rigorous content • Strategies for representing concepts in different formats • Stop and Think questions throughout and reflection questions at the end of each chapter • Try It! Implementation activities, student work examples, and classroom transcripts With case studies and activities that provide a solid foundation for teachers’ growth and exploration, this groundbreaking book will help teachers and teacher educators engage in meaningful, humanized mathematics instruction.
Making mathematics concepts understandable is a challenge for any teacher--a challenge that's more complex when a classroom includes students with learning difficulties. With this highly practical resource, educators will have just what they need to teach mathematics with confidence: research-based strategies that really work with students who have learning disabilities, ADHD, or mild cognitive disabilities. This urgently needed guidebook helps teachers Understand why students struggle.Teachers will discover how the common learning characteristics of students with learning difficulties create barriers to understanding mathematics. Review the Big Ideas. Are teachers focusing on the right things? A helpful primer on major NCTM-endorsed mathematical concepts and processes helps them be sure. Directly address students' learning barriers. With the lesson plans, practical strategies, photocopiable information-gathering forms, and online strategies in action, teachers will have concrete ways to help students grasp mathematical concepts, improve their proficiency, and generalize knowledge in multiple contexts. Check their own strengths and needs. Educators will reflect critically on their current practices with a thought-provoking questionnaire. With this timely book--filled with invaluable ideas and strategies adaptable for grades K-12--educators will know just what to teach and how to teach it to students with learning difficulties.
Children learn mathematics most effectively in contexts that are meaningful to them. Realizing the potential of these contexts for fostering young children's mathematical learning while nurturing and challenging them, requires knowledge of mathematics as well as of child development. Avoiding the debates surrounding hands-on learning vs. direct instruction, the author focuses on the value of different contexts for learning, and illustrates ways to genuinely engage children as active learners. The work is rich with examples of children's interactions with each other and with adults as they utilize and extend their understanding of mathematics. Examples and guidelines for developing lessons and activities will be useful to educators and parents. Chapters explore how we underestimate young children's mathematical capabilities; how appropriate sequencing of learning and building on prior knowledge will enhance understanding; what teachers, including parent-teachers, need to know; and high-stakes testing. This is a work that brings together the connections between knowing the basics and constructing knowledge in accessible and practical ways.
Resource added for the Mathematics 108041 courses.
Early childhood mathematics is vitally important for young children's present and future educational success. Research demonstrates that virtually all young children have the capability to learn and become competent in mathematics. Furthermore, young children enjoy their early informal experiences with mathematics. Unfortunately, many children's potential in mathematics is not fully realized, especially those children who are economically disadvantaged. This is due, in part, to a lack of opportunities to learn mathematics in early childhood settings or through everyday experiences in the home and in their communities. Improvements in early childhood mathematics education can provide young children with the foundation for school success. Relying on a comprehensive review of the research, Mathematics Learning in Early Childhood lays out the critical areas that should be the focus of young children's early mathematics education, explores the extent to which they are currently being incorporated in early childhood settings, and identifies the changes needed to improve the quality of mathematics experiences for young children. This book serves as a call to action to improve the state of early childhood mathematics. It will be especially useful for policy makers and practitioners-those who work directly with children and their families in shaping the policies that affect the education of young children.
​*** OVER 13 MILLION COPIES SOLD​*** Time and again, the work performed at The Institutes for the Achievement of Human Potential has demonstrated that children from birth to age six are capable of learning better and faster than older children. How To Teach Your Baby To Read shows just how easy it is to teach a young child to read, while How To Teach Your Baby Math presents the simple steps for teaching mathematics through the development of thinking and reasoning skills. Both books explain how to begin and expand each program, how to make and organize necessary materials, and how to more fully develop your child’s reading and math potential. How to Give Your Baby Encyclopedic Knowledge shows how simple it is to develop a program that cultivates a young child’s awareness and understanding of the arts, science, and nature—to recognize the insects in the garden, to learn about the countries of the world, to discover the beauty of a Van Gogh painting, and much more. How To Multiply Your Baby’s Intelligence provides a comprehensive program for teaching your young child how to read, to understand mathematics, and to literally multiply his or her overall learning potential in preparation for a lifetime of success. The Gentle Revolution Series: The Institutes for the Achievement of Human Potential has been successfully serving children and teaching parents for five decades. Its goal has been to significantly improve the intellectual, physical, and social development of all children. The groundbreaking methods and techniques of The Institutes have set the standards in early childhood education. As a result, the books written by Glenn Doman, founder of this organization, have become the all-time best-selling parenting series in the United States and the world.
Selected as the Michigan Council of Teachers of Mathematics winter book club book! Rich tasks, collaborative work, number talks, problem-based learning, direct instruction...with so many possible approaches, how do we know which ones work the best? In Visible Learning for Mathematics, six acclaimed educators assert it’s not about which one—it’s about when—and show you how to design high-impact instruction so all students demonstrate more than a year’s worth of mathematics learning for a year spent in school. That’s a high bar, but with the amazing K-12 framework here, you choose the right approach at the right time, depending upon where learners are within three phases of learning: surface, deep, and transfer. This results in "visible" learning because the effect is tangible. The framework is forged out of current research in mathematics combined with John Hattie’s synthesis of more than 15 years of education research involving 300 million students. Chapter by chapter, and equipped with video clips, planning tools, rubrics, and templates, you get the inside track on which instructional strategies to use at each phase of the learning cycle: Surface learning phase: When—through carefully constructed experiences—students explore new concepts and make connections to procedural skills and vocabulary that give shape to developing conceptual understandings. Deep learning phase: When—through the solving of rich high-cognitive tasks and rigorous discussion—students make connections among conceptual ideas, form mathematical generalizations, and apply and practice procedural skills with fluency. Transfer phase: When students can independently think through more complex mathematics, and can plan, investigate, and elaborate as they apply what they know to new mathematical situations. To equip students for higher-level mathematics learning, we have to be clear about where students are, where they need to go, and what it looks like when they get there. Visible Learning for Math brings about powerful, precision teaching for K-12 through intentionally designed guided, collaborative, and independent learning.