Download Free Teaching Ai Book in PDF and EPUB Free Download. You can read online Teaching Ai and write the review.

Get the tools, resources and insights you need to explore artificial intelligence in the classroom and explore what students need to know about living in a world with AI. For many, artificial intelligence, or AI, may seem like science fiction, or inherently overwhelming. The reality is that AI is already being applied in industry and, for many of us, in our daily lives as well. A better understanding of AI can help you make informed decisions in the classroom that will impact the future of your students. Drawing from a broad variety of expert voices from countries including Australia, Japan, and South Africa, as well as educators from around the world and underrepresented student voices, this book explores some of the ways AI can improve education. These include educating learners about AI, teaching them about living in a world where they will be surrounded by AI and helping educators understand how they can use AI to augment human ability. Each chapter offers activities and questions to help you deepen your understanding, try out new concepts and reflect on the information presented. Links to media artifacts from trusted sources will help make your learning experience more dynamic while also providing additional resources to use in your classroom. This book: • Offers a unique approach to the topic, with chapter opening scenes, case studies, and featured student voices. • Discusses a variety of ways to teach students about AI, through design thinking, project-based learning and STEM connections. • Includes lesson ideas, activities and tools for exploring AI with your students. • Includes references to films and other media you can use in class to start discussions on AI or inspire design thinking and STEM projects. In Teaching AI, you’ll learn what AI is, how it works and how to use it to better prepare students in a world with increased human-computer interaction.
Early rules-based artificial intelligence demonstrated intriguing decision-making capabilities but lacked perception and didn't learn. AI today, primed with machine learning perception and deep reinforcement learning capabilities, can perform superhuman decision-making for specific tasks. This book shows you how to combine the practicality of early AI with deep learning capabilities and industrial control technologies to make robust decisions in the real world. Using concrete examples, minimal theory, and a proven architectural framework, author Kence Anderson demonstrates how to teach autonomous AI explicit skills and strategies. You'll learn when and how to use and combine various AI architecture design patterns, as well as how to design advanced AI without needing to manipulate neural networks or machine learning algorithms. Students, process operators, data scientists, machine learning algorithm experts, and engineers who own and manage industrial processes can use the methodology in this book to design autonomous AI. This book examines: Differences between and limitations of automated, autonomous, and human decision-making Unique advantages of autonomous AI for real-time decision-making, with use cases How to design an autonomous AI from modular components and document your designs
"The landscape for education has been rapidly changing in the last years: demographic changes affecting the makeup of families, multiple school options available to children, wealth disparities, the global economy demanding new skills from workers, and continued breakthroughs in technology are some of the factors impacting education. Given these changes, how can schools continue to prepare students for the future? In a world where information is readily available online, how can schools continue to be relevant? The emergence of Artificial Intelligence (AI) has exacerbated the need to have these conversations. Its impact on education and the multiple possibilities that it offers are putting pressure on educational leaders to reformulate the school curriculum and the channels to deliver it. The book "Artificial Intelligence in Education, Promises and Implications for Teaching and Learning" by the Center for Curriculum Redesign immerses the reader in a discussion on what to teach students in the era of AI and examines how AI is already demanding much needed updates to the school curriculum, including modernizing its content, focusing on core concepts, and embedding interdisciplinary themes and competencies with the end goal of making learning more enjoyable and useful in students' lives. The second part of the book dives into the history of AI in education, its techniques and applications -including the way AI can help teachers be more effective, and finishes on a reflection about the social aspects of AI. This book is a must-read for educators and policy-makers who want to prepare schools to face the uncertainties of the future and keep them relevant." --Amada Torres, VP, Studies, Insights, and Research, National Association of Independent School (NAIS) "The rapid advances in technology in recent decades have already brought about substantial changes in education, opening up new opportunities to teach and learn anywhere anytime and providing new tools and methods to improve learning outcomes and support innovative teaching and learning.Research into artificial intelligence and machine learning in education goes back to the late 1970s. Artificial intelligence methods were generally employed in two ways: to design and facilitate interactive learning environments that would support learning by doing, and to design and implement tutoring systems by adapting instructions with respect to the students' knowledge state.But this is just the beginning. As Artificial Intelligence in Education shows, AI is increasingly used in education and learning contexts. The collision of three areas - data, computation and education - is set to have far-reaching consequences, raising fundamental questions about the nature of education: what is taught and how it is taught. Artificial Intelligence in Education is an important, if at times disturbing, contribution to the debate on AI and provides a detailed analysis on how it may affect the way teachers and students engage in education. The book describes how artificial intelligence may impact on curriculum design, on the individualisation of learning, and on assessment, offering some tantalising glimpses into the future (the end of exams, your very own lifelong learning companion) while not falling victim to tech-hype. The enormous ethical, technical and pedagogical challenges ahead are spelt out, and there is a real risk that the rapid advances in artificial intelligence products and services will outstrip education systems' capacity to understand, manage and integrate them appropriately. As the book concludes: "We can either leave it to others (the computer scientists, AI engineers and big tech companies) to decide how artificial intelligence in education unfolds, or we can engage in productive dialogue."I commend this book to anyone concerned with the future of education in a digital world." --Marc Durando, Executive Director, European Schoolnet
You've heard about "flipping your classroom"—now find out how to do it! Introducing a new way to think about higher education, learning, and technology that prioritizes the benefits of the human dimension. José Bowen recognizes that technology is profoundly changing education and that if students are going to continue to pay enormous sums for campus classes, colleges will need to provide more than what can be found online and maximize "naked" face-to-face contact with faculty. Here, he illustrates how technology is most powerfully used outside the classroom, and, when used effectively, how it can ensure that students arrive to class more prepared for meaningful interaction with faculty. Bowen offers practical advice for faculty and administrators on how to engage students with new technology while restructuring classes into more active learning environments.
Designed as a self-teaching introduction to the fundamental concepts of artificial intelligence, the book begins with its history, the Turing test, and early applications. Later chapters cover the basics of searching, game playing, and knowledge representation. Expert systems and machine learning are covered in detail, followed by separate programming chapters on Prolog and Python. The concluding chapter on artificial intelligence machines and robotics is comprehensive with numerous modern applications. Features: Covers an introduction to concepts related to AI, including searching processes, knowledge representation, machine learning, expert systems, programming, and robotics Includes separate chapters on Prolog and Python to introduce basic programming techniques in AI
"In a world where where online and offline overlap and coincide, this book presents how digital intelligence is a key competence for the future of education and looks at how AI and other digital tools are improving the world of education"--
The digital age has ushered in an era where students must be equipped not only with traditional knowledge but also with the skills to navigate an increasingly interconnected and technologically driven world. As traditional teaching methods encounter the complexities of the 21st century, the demand for innovation becomes more apparent. This paves the way for the era of artificial intelligence (AI), a technological frontier that carries the potential to reshape education fundamentally. AI-Enhanced Teaching Methods recognizes the urgency of the ongoing technological shift and delves into an exploration of how AI can be effectively harnessed to redefine the learning experience. The book serves as a guide for educators, offering insights into navigating between conventional teaching methodologies and the possibilities presented by AI. It provides an understanding of AI's role in education, covering topics from machine learning to natural language processing. Ethical considerations, including privacy and bias, are thoroughly addressed with thoughtful solutions as well. Additionally, the book provides valuable support for administrators, aiding in the integration of these technologies into existing curricula.
Get practical tools and strategies for teaching AI across the K-12 curriculum with this accessible guide. As AI continues to transform our world, educators have a responsibility to stay current with the changes, and ensure that students have the necessary knowledge and skills to succeed in the future. Written by an educator who is currently teaching on this topic, How to Teach AI shares practical strategies and tools based on what good practice looks like in the classroom right now. Readers will build confidence in integrating AI into their curriculum so they can effectively prepare students for their careers. Taking a friendly and accessible approach, the book covers a range of topics related to AI, such as machine learning, robotics and natural language processing, and includes examples of how these technologies are being implemented in different industries and their impact on education. The book includes a chapter dedicated to the ethics of AI, addressing issues around bias, intellectual property, student data privacy and more. The book includes: • Ideas for using generative AI in the classroom and tips for writing effective prompts. • Activity ideas across content areas, including computer science, economics, literature, music and more. • Time-saving ideas for teachers, and study aids for students to explore. • AI-powered tool recommendations for teachers. • Questions for reflection in every chapter. With examples from educators in the field, and a variety of resources to apply in the classroom, this book helps educators become comfortable with this important topic and create meaningful learning experiences for their students.
Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala
Generative AI in Teaching and Learning delves into the revolutionary field of generative artificial intelligence and its impact on education. This comprehensive guide explores the multifaceted applications of generative AI in both formal and informal learning environments, shedding light on the ethical considerations and immense opportunities that arise from its implementation. From the early approaches of utilizing generative AI in teaching to its integration into various facets of learning, this book offers a profound analysis of its potential. Teachers, researchers, instructional designers, developers, data analysts, programmers, and learners alike will find valuable insights into harnessing the power of generative AI for educational purposes.