Download Free Tantalum And Tantalum Alloys Book in PDF and EPUB Free Download. You can read online Tantalum And Tantalum Alloys and write the review.

Electronic, optical, mechanical and medical appliances are just a few examples of modern applications that use tantalum and niobium. In Chemistry of Tantalum and Niobium Fluoride Compounds, the author draws on thirty years' experience to produce the first ever monograph to systemize and summarize the data available on tantalum and niobium fluoride compounds. This comprehensive reference source offers a rich variety of study methodology and is invaluable to researchers examining the chemistry of fluorides, as well as teachers and students in chemistry and metallurgy.* Collects the latest research on the chemistry of complex fluorides and oxyfluorides of Tantalum and Niobium.* Covers both theory and application of Tantalum and Niobium Fluoride Chemistry* Is suitable for tantalum and niobium producers, researchers studying the chemistry of fluorides, as well as teachers and students in chemistry and metallurgy
Structural Biomaterials: Properties, Characteristics, and Selection serves as a single point of reference to digest current research and develop a deeper understanding in the field of biomaterials engineering. This book uses a materials-focused approach, allowing the reader to quickly access specific, detailed information on biomaterials characterization and selection. Relevant to a range of readers, this book provides holistic coverage of the broad categories of structural biomaterials currently available and used in medical applications, highlighting the property requirements for structural biomaterials, their biocompatibility performance and their safety regulation in key categories such as metals, ceramics and polymers. The materials science perspective of this text ensures the content is accessible even to those without an extensive background in applied medicine, positioning this text not just for students, but as an overview and reference for researchers, scientists and engineers entering the field from related materials science disciplines. - Provides a unique, holistic approach, covering key biomaterials categories in one text, including metals, ceramics and polymers - Discusses advantages, disadvantages, biocompatibility performance and safety regulations, allowing for accurate materials selection in medical applications - Utilizes a materials science perspective, allowing those without an extensive applied medical background to learn about the field
This exhaustive work in three volumes and over 1300 pages provides a thorough treatment of ultra-high temperature materials with melting points over 2500 °C. The first volume focuses on Carbon and Refractory Metals, whilst the second and third are dedicated solely to Refractory compounds and the third to Refractory Alloys and Composites respectively. Topics included are physical (crystallographic, thermodynamic, thermo physical, electrical, optical, physico-mechanical, nuclear) and chemical (solid-state diffusion, interaction with chemical elements and compounds, interaction with gases, vapours and aqueous solutions) properties of the individual physico-chemical phases of carbon (graphite/graphene), refractory metals (W, Re, Os, Ta, Mo, Nb, Ir) and compounds (oxides, nitrides, carbides, borides, silicides) with melting points in this range. It will be of interest to researchers, engineers, postgraduate, graduate and undergraduate students alike. The reader is provided with the full qualitative and quantitative assessment for the materials, which could be applied in various engineering devices and environmental conditions at ultra-high temperatures, on the basis of the latest updates in the field of physics, chemistry, materials science and engineering.
The Chemistry of Vanadium, Niobium and Tantalum gives a comprehensive discussion on the discovery, origin, and metallurgical aspects of vanadium, niobium, and tantalum. A section is also focused on the nuclear properties, as well as the physical and chemical properties of each compound. The history and distribution of vanadium, niobium, and tantalum are explored, along with the purification and extraction procedures of the said elements. The book also explores the derivative compounds such as the alloys, hydride, halides, and oxides. Another section of the book is focused on the physical and chemical modifications of the elements that generate such by-products as the cyanides, hydroxides, and sulfides. Different complexes of the elements such as halogeno- and oxyhalogeno-complexes are discussed in detail. The organometallic chemistry of niobium, tantalum, and vanadium are also identified. The book will be a useful tool for chemical engineers, chemical scientists, and students in the field of chemistry.
This book gathers the proceedings of the 5th International Conference on Nanotechnologies and Biomedical Engineering, held online on November 3–5, 2021, from Chisinau, Republic of Moldova. It covers fundamental and applied research at the interface between nanotechnologies and biomedical engineering. Chapters report on cutting-edge bio-micro/nanotechnologies, devices for biomedical applications, and advances in bio-imaging and biomedical signal processing, innovative nano-biomaterials as well as advances in e-health, medical robotics, and related topics. With a good balance of theory and practice, the book offers a timely snapshot of multidisciplinary research at the interface between physics, chemistry, biomedicine, materials science, and engineering.
Ni-free Ti-based Shape Memory Alloys reviews the fundamental issues of biomedical beta-type Ti base shape memory and superelastic alloys, including martensitic transformation, shape memory and superelastic properties, alloy development, thermomechanical treatment and microstructure control, and biocompatibility. Some unique properties, such as large nonlinear elastic behavior and low Young's modulus, observed in metastable Ti alloys are discussed on the basis of phase stability. As it is expected that superelastic Ti alloys will further expand the applications of shape memory alloys within the biomedical field, this book provides a comprehensive review of these new findings in Ti-base shape memory and superelastic alloys. - Includes coverage of phase transformations in titanium alloys - Discusses mechanical properties and alloy development - Presents a review of Ti-based shape alloys and their applications