Download Free T2k Measurements Of Muon Neutrino And Antineutrino Disappearance Using 313x1021 Protons On Target Book in PDF and EPUB Free Download. You can read online T2k Measurements Of Muon Neutrino And Antineutrino Disappearance Using 313x1021 Protons On Target and write the review.

This thesis reports the measurement of muon neutrino and antineutrino disappearance and electron neutrino and antineutrino appearance in a muon neutrino and antineutrino beam using the T2K experiment. It describes a result in neutrino physics that is a pioneering indication of charge-parity (CP) violation in neutrino oscillation; the first to be obtained from a single experiment. Neutrinos are some of the most abundant—but elusive—particles in the universe, and may provide a promising place to look for a potential solution to the puzzle of matter/antimatter imbalance in the observable universe. It has been firmly established that neutrinos can change flavour (or ‘oscillate’), as recognised by the 2015 Nobel Prize. The theory of neutrino oscillation allows for neutrinos and antineutrinos to oscillate differently (CP violation), and may provide insights into why our universe is matter-dominated. Bayesian statistical methods, including the Markov Chain Monte Carlo fitting technique, are used to simultaneously optimise several hundred systematic parameters describing detector, beam, and neutrino interaction uncertainties as well as the six oscillation parameters.
This thesis reports the calculation of neutrino production for the T2K experiment; the most precise a priori estimate of neutrino production that has been achieved for any accelerator-based neutrino oscillation experiment to date. The production of intense neutrino beams at accelerator facilities requires exceptional understanding of chains of particle interactions initiated within extended targets. In this thesis, the calculation of neutrino production for T2K has been improved by using measurements of particle production from a T2K replica target, taken by the NA61/SHINE experiment. This enabled the reduction of the neutrino production uncertainty to the level of 5%, which will have a significant impact on neutrino oscillation and interaction measurements by T2K in the coming years. In addition to presenting the revised flux calculation methodology in an accessible format, this thesis also reports a joint T2K measurement of muon neutrino and antineutrino disappearance, and the accompanying electron neutrino and antineutrino appearance, with the updated beam constraint.
This book is based on the author's work in the T2K long-baseline neutrino oscillation experiment, in which neutrinos are generated by a proton beam and are detected by near and far neutrino detectors. In order to achieve the precise measurement of the neutrino oscillation, an accurate understanding of the neutrino beam and the neutrino interaction is essential. Thus, the author measured the neutrino beam properties and the neutrino interaction cross sections using a near neutrino detector called INGRID and promoted a better understanding of them. Then, the author performed a neutrino oscillation analysis using the neutrino beam and neutrino interaction models verified by the INGRID measurements. As a result, some values of the neutrino CP phase are disfavored at the 90% confidence level. If the measurement precision is further improved, we may be able to discover the finite CP phase which involves the CP violation. Thus, this result is an important step towards the discovery of CP violation in the lepton sector, which may be the key to understanding the origin of the matter–antimatter asymmetry in the universe.