Download Free Systems Level Modelling Of Microbial Communities Book in PDF and EPUB Free Download. You can read online Systems Level Modelling Of Microbial Communities and write the review.

Systems-Level Modelling of Microbial Communities: Theory and Practice introduces various aspects of modelling microbial communities and presents a detailed overview of the computational methods which have been developed in this area. This book is aimed at researchers in the field of computational/systems biology as well as biologists/experimentalists studying microbial communities, who are keen on embracing the concepts of computational modelling. The primary focus of this book is on methods for modelling interactions between micro-organisms in a community, with special emphasis on constraint-based and network-based modelling techniques. A brief overview of population- and agent-based modelling is also presented. Lastly, it covers the experimental methods to understand microbial communities, and provides an outlook on how the field may evolve in the coming years.
Microbial mat communities consist of dense populations of microorganisms embedded in exopolymers and/or biomineralized solid phases, and are often found in mm-cm thick assemblages, which can be stratified due to environmental gradients such as light, oxygen or sulfide. Microbial mat communities are commonly observed under extreme environmental conditions, deriving energy primarily from light and/or reduced chemicals to drive autotrophic fixation of carbon dioxide. Microbial mat ecosystems are regarded as living analogues of primordial systems on Earth, and they often form perennial structures with conspicuous stratifications of microbial populations that can be studied in situ under stable conditions for many years. Consequently, microbial mat communities are ideal natural laboratories and represent excellent model systems for studying microbial community structure and function, microbial dynamics and interactions, and discovery of new microorganisms with novel metabolic pathways potentially useful in future industrial and/or medical applications. Due to their relative simplicity and organization, microbial mat communities are often excellent testing grounds for new technologies in microbiology including micro-sensor analysis, stable isotope methodology and modern genomics. Integrative studies of microbial mat communities that combine modern biogeochemical and molecular biological methods with traditional microbiology, macro-ecological approaches, and community network modeling will provide new and detailed insights regarding the systems biology of microbial mats and the complex interplay among individual populations and their physicochemical environment. These processes ultimately control the biogeochemical cycling of energy and/or nutrients in microbial systems. Similarities in microbial community function across different types of communities from highly disparate environments may provide a deeper basis for understanding microbial community dynamics and the ecological role of specific microbial populations. Approaches and concepts developed in highly-constrained, relatively stable natural communities may also provide insights useful for studying and understanding more complex microbial communities.
Microbes exist naturally in a wide range of environments, spanning the extremes of high acidity and high temperature to soil and the ocean, in communities where their interactions are significant. We present a practical discussion of three different approaches for modeling microbial communities: rate equations, individual-based modeling, and population dynamics. We illustrate the approaches with detailed examples. Each approach is best fit to different levels of system representation, and they have different needs for detailed biological input. Thus, this set of approaches is able to address the operation and function of microbial communities on a wide range of organizational levels.
This book is a printed edition of the Special Issue "Microbial Community Modeling: Prediction of Microbial Interactions and Community Dynamics" that was published in Processes
These volumes present the main classes of useful laboratory model systems used to study microbial ecosystems, with emphasis on the practical details for the use of each model. The most commonly used model, the homogeneous fermenter, is featured along with linked homogeneous culture systems, film fermenters, and percolating columns. Additionally, gel-stabilized culture systems which incorporate molecular diffusion as their main solute transfer mechanism and the microbial colony are explained. Chapters comparing model systems with "microcosms" are included, along with discussions of the value of computer models in microbial ecosystem research. Highlighted is a global discussion of the value of laboratory models in microbial ecology.
Beginning with the germ theory of disease in the 19th century and extending through most of the 20th century, microbes were believed to live their lives as solitary, unicellular, disease-causing organisms . This perception stemmed from the focus of most investigators on organisms that could be grown in the laboratory as cellular monocultures, often dispersed in liquid, and under ambient conditions of temperature, lighting, and humidity. Most such inquiries were designed to identify microbial pathogens by satisfying Koch's postulates.3 This pathogen-centric approach to the study of microorganisms produced a metaphorical "war" against these microbial invaders waged with antibiotic therapies, while simultaneously obscuring the dynamic relationships that exist among and between host organisms and their associated microorganisms-only a tiny fraction of which act as pathogens. Despite their obvious importance, very little is actually known about the processes and factors that influence the assembly, function, and stability of microbial communities. Gaining this knowledge will require a seismic shift away from the study of individual microbes in isolation to inquiries into the nature of diverse and often complex microbial communities, the forces that shape them, and their relationships with other communities and organisms, including their multicellular hosts. On March 6 and 7, 2012, the Institute of Medicine's (IOM's) Forum on Microbial Threats hosted a public workshop to explore the emerging science of the "social biology" of microbial communities. Workshop presentations and discussions embraced a wide spectrum of topics, experimental systems, and theoretical perspectives representative of the current, multifaceted exploration of the microbial frontier. Participants discussed ecological, evolutionary, and genetic factors contributing to the assembly, function, and stability of microbial communities; how microbial communities adapt and respond to environmental stimuli; theoretical and experimental approaches to advance this nascent field; and potential applications of knowledge gained from the study of microbial communities for the improvement of human, animal, plant, and ecosystem health and toward a deeper understanding of microbial diversity and evolution. The Social Biology of Microbial Communities: Workshop Summary further explains the happenings of the workshop.
Research on decomposer communities of terrestrial ecosystems for a long time has focussed on microbial biomass and gross turnover parameters. Recently, more and more attempts are made to look beyond the biomass, and more specifically determine functions and populations on a smaller scale-in time and space. A multitude of techniques is being improved and developed. Garland and Mills (1991) triggered a series of publications on substrate utilization tests in the field of microbial ecology. Despite several promising results for different applications in different laboratories, many problems concerning the assay and the interpretation of results became evident. After individual discussions on the approach with colleagues from various laboratories we started to plan a workshop on the matter. The response on our first circular was extraordinary, and instead of a small workshop it became a meeting with almost 150 participants. The meeting was named 'Substrate use for characterization of microbial communities in terrestrial ecosystems' (SUBMECO) and was held in Innsbruck, Austria, from Oct. 16-18, 1996. The very focussed scope attracted enthusiastic advocates of the approach, and also serious critics. Some of the topics concerned improvements of current inoculation and incubation techniques, ranging from sample pre-treatment, inoculum density and incubation temperature to statistical data handling. New methods for calculating microbial diversity were proposed, as well as bootstrap methods that allow statistics with many variables on a relatively low number of replicates.
These volumes present the main classes of useful laboratory model systems used to study microbial ecosystems, with emphasis on the practical details for the use of each model. The most commonly used model, the homogeneous fermenter, is featured along with linked homogeneous culture systems, film fermenters, and percolating columns. Additionally, gel-stabilized culture systems which incorporate molecular diffusion as their main solute transfer mechanism and the microbial colony are explained. Chapters comparing model systems with "microcosms" are included, along with discussions of the value of computer models in microbial ecosystem research. Highlighted is a global discussion of the value of laboratory models in microbial ecology.
Microbial Community Analysis surveys the vast amount of theoretical and practical knowledge on the design of biological treatment systems. It describes the different types of biological wastewater systems, the role of microbial diversity in these systems, and how this affects design and operation, methods for studying microbial community dynamics, and mathematical modelling of these systems. Contents Biological methods for the treatment of wastewaters Biodiversity and microbial interactions in the biodegradation of organic compounds Microbial population dynamics in biological wastewater treatment plants Molecular techniques for determining microbial community structures in activated sludge Principles in the modelling of biological wastewater treatment plants Practical considerations for the design of biological wastewater treatment systems Scientific and Technical Report No.5
From the Chapman & Hall Microbiology Series this unique resource offers specific experimental and practical applications of mathematical modeling in microbial ecology. The text presents a variety of systems, ranging from subcellular systems to ecosystems, and shows how to test whether the models provide a good representation of the system. The book also encourages further development and application of modeling to burgeoning problems associated with microbial ecology, such as the pollution and destruction of pesticides and herbicides.