Download Free Systems Engineering And Management For Sustainable Development Book in PDF and EPUB Free Download. You can read online Systems Engineering And Management For Sustainable Development and write the review.

Systems Engineering and Management for Sustainable Development is a component of Encyclopedia of Technology, Information, and Systems Management Resources in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. This theme discusses: basic principles of systems engineering and management for sustainable development, including: cost effectiveness assessment; decision assessment, tradeoffs, conflict resolution and negotiation; research and development policy; industrial ecology; and risk management strategies for sustainability. The emphasis throughout will be upon the development of appropriate life-cycles for processes that assist in the attainment of sustainable development, and in the use of appropriate policies and systems management approaches to ensure successful application of these processes. The general objectives of these chapters is to illustrate the way in which one specific issue, such as the need to bring about sustainable development, necessarily grows in scope such that it becomes only feasible to consider the engineering and architecting of appropriate systems when the specific issue is imbedded into a wealth of other issues. The discussions provide an illustration of the many attributes and needs associated with the important task of utilizing information and knowledge, enabled through systems engineering and management, to engineer systems involving humans, organizations, and technology, in the support of sustainability. These two volumes are aimed at the following five major target audiences: University and College students Educators, Professional practitioners, Research personnel and Policy analysts, managers, and decision makers and NGOs.
This book presents the application of system analysis techniques with case studies to help readers learn how the techniques can be applied, how the problems are solved, and which sustainable management strategies can be reached.
Systems Engineering and Management for Sustainable Development is a component of Encyclopedia of Technology, Information, and Systems Management Resources in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. This theme discusses: basic principles of systems engineering and management for sustainable development, including: cost effectiveness assessment; decision assessment, tradeoffs, conflict resolution and negotiation; research and development policy; industrial ecology; and risk management strategies for sustainability. The emphasis throughout will be upon the development of appropriate life-cycles for processes that assist in the attainment of sustainable development, and in the use of appropriate policies and systems management approaches to ensure successful application of these processes. The general objectives of these chapters is to illustrate the way in which one specific issue, such as the need to bring about sustainable development, necessarily grows in scope such that it becomes only feasible to consider the engineering and architecting of appropriate systems when the specific issue is imbedded into a wealth of other issues. The discussions provide an illustration of the many attributes and needs associated with the important task of utilizing information and knowledge, enabled through systems engineering and management, to engineer systems involving humans, organizations, and technology, in the support of sustainability. These two volumes are aimed at the following five major target audiences: University and College students Educators, Professional practitioners, Research personnel and Policy analysts, managers, and decision makers and NGOs
Sustainability and sustainable development have become popular goals. They have also become wide-ranging terms that can be applied to any entity or enterprise on a local or a global scale for long time periods. As enterprises and systems become more complex and development a support costs increase, the question remains: how does one engineer an ent
The challenge of improving the daily lives of people in developing communities calls for a new generation of global engineers who can operate in environments vastly different from those in the developed world. Engineers must become creative and innovative as they contend with uncertainty, complexity, and constraints in unfamiliar cultural settings. They must also deal with a multitude of technical and nontechnical issues beyond their accustomed practice. In this book, Bernard Amadei addresses the role of engineering in poverty reduction and human development. He introduces a framework to help engineers conduct small-scale projects in communities vulnerable to the consequences of a wide range of adverse events. His framework combines concepts and tools traditionally used by development agencies with techniques from engineering project management and systems thinking. When blended, these tools and techniques from seemingly unrelated fields offer engineers better methods to manage the difficulties inherent in community development projects.Engineering for Sustainable Human Development is about the delivery of projects that are done right from a performance (technical) point of view and are also the right projects from a social, environmental, and economic (context) point of view. This multidisciplinary approach to sustainable engineering will be valuable to practitioners and students, as well as people associated with development organizations and aid agencies.
In recent years, much work has been done in formulating and clarifying the concept of sustainable development and related theoretical and research issues. Now, the challenge has shifted to designing and stimulating processes of effective planning and decision-making, at all levels of human activity, in such a way as to achieve local and global sustainable development. Information technology can help a great deal in achieving sustainable development by providing well-designed and useful tools for decision makers. One such tool is the decision support system, or DSS. This book explores the area of DSS in the context of sustainable development. As DSS is a very new technique, especially in the developing world, this book will serve as a reference text, primarily for managers, government officials, and information professionals in developing countries. It covers the concept of sustainable development, defines DSS and how it can be used in the planning and management of sustainable development, and examines the state of the art in DSS use. Other interested readers will include students, teachers, and analysts in information sciences; DSS designers, developers, and implementors; and international development agencies.
Engineering for Sustainable Communities: Principles and Practices defines and outlines sustainable engineering methods for real-world engineering projects.
It is crucial that engineers – from students to those already practising – have a deep understanding of the environmental threats facing the world, if they are to become part of the solution and not the problem. Is there a way to reconcile modern lifestyles with the compelling need for change? Could new improved technologies play a key role? If great leaps in the environmental efficiency of technologies are needed, can they be produced? Engineers are in a privileged and hugely influential position to innovate, design and build a sustainable future. But are they engaged or uninterested? Are they knowledgeable or ignorant? This book has been developed by a number of committed educators in European engineering departments under the leadership of Delft University of Technology and the Technical University of Catalunya to meet the perceived gap between what engineers know and what they should know in relation to sustainable development. The University of Delft decided as long ago as 1998 that all of its engineering graduates, working towards careers as designers, managers or researchers, should be prepared for the challenge of sustainable development and, as such, should leave university able to make sustainable development operational in their designs and daily practices. The huge amount of knowledge gathered on best-practice teaching for engineers is reflected in this book. The aim is to give engineering students a grounding in the challenge that sustainable development poses to the engineering profession, the contribution the engineer can make to attaining some of the societal and environmental goals of sustainability, and the barriers and pitfalls engineers will likely need to confront in their professional lives. Concise but comprehensive, the book examines the key tools, skills and techniques that can be used in engineering design and management to ensure that whole-life costs and impacts of engineering schemes are addressed at every stage of planning, implementation and disposal. The book also aims to demonstrate through real-life examples the tangible benefits that have already been achieved in many engineering projects, and to highlight how real improvements can be, and are being, made. Each chapter ends with a series of questions and exercises for the student to undertake. Sustainable Development for Engineers will be essential reading for all engineers and scientists concerned with sustainable development. In particular, it provides key reading and learning materials for undergraduate and postgraduate students reading environmental, chemical, civil or mechanical engineering, manufacturing and design, environmental science, green chemistry and environmental management.
In a competitive and complex world, where requirements from different fields are ever-growing, organizations need to be responsible for their actions in their respective markets. However, this responsibility must not be deemed one-time-only but instead should be seen as a continuous process, under which organizations ought to effectively use the different resources to allow them to meet the present and future requirements of their stakeholders. Having a significant influence on their collaborators performance, the role developed by managers and engineers is highly relevant to the sustainability of an organizations success. Conscious of this reality, this book contributes to the exchange of experiences and perspectives on the state of research related to sustainable management. Particular focus is given to the role that needs to be developed by managers and engineers, as well as to the future direction of this field of research.
Engineer and implement sustainable transportation solutions Featuring in-depth coverage of passenger and freight transportation, this comprehensive resource discusses contemporary transportation systems and options for improving their sustainability. The book addresses vehicle and infrastructure design, economics, environmental concerns, energy security, and alternative energy sources and platforms. Worked-out examples, case studies, illustrations, equations, and end-of-chapter problems are also included in this practical guide. Sustainable Transportation Systems Engineering covers: Background on energy security and climate change Systems analysis tools and techniques Individual choices and transportation demand Transportation systems and vehicle design Physical design of transportation infrastructure Congestion mitigation in urban passenger transportation Role of intelligent transportation systems Public transportation and multimodal solutions Personal mobility and accessibility Intercity passenger transportation Freight transportation function and current trends Freight modal and supply chain management approaches Spatial and geographic aspects of freight transportation Alternative fuels and platforms Electricity and hydrogen as alternative fuels Bioenergy resources and systems Transportation security and planning for extreme weather events PRAISE FOR SUSTAINABLE TRANSPORTATION SYSTEMS ENGINEERING: "This book addresses one of the great challenges of the 21st century--how to transform our resource-intensive passenger and freight transportation system into a set of low-carbon, economically efficient, and socially equitable set of services." -- Dan Sperling, Professor and Director, Institute of Transportation Studies, University of California, Davis, author of Two Billion Cars: Driving toward Sustainability "...provides a rich tool kit for students of sustainable transportation, embracing a systems approach. The authors aptly blend engineering, economics, and environmental impact analysis approaches." -- Susan Shaheen, Professor, Department of Civil and Environmental Engineering, and Co-Director, Transportation Sustainability Research Center, University of California, Berkeley