Download Free System Theoretic Methods In Economic Modelling I Book in PDF and EPUB Free Download. You can read online System Theoretic Methods In Economic Modelling I and write the review.

The value of applying system-theoretic concepts to economic modelling problems arises from the fact that it offers a unifying framework for modelling dynamic systems. In addition to offering this powerful conceptual framework, it provides a wide range of tools useful in applied work. System-theoretic techniques enter predominantly two stages of economic modelling efforts: the stage of model construction and the stage of model application in accordance with the modelling. The objective of this and subsequent volumes on System-Theoretic Methods in Economic Modelling I is to initiate and/or intensify dialogues between researchers and practitioners within and across the disciplines involved. This first volume brings together papers exhibiting a wide range of system-theoretic techniques and applications to economic problems. The papers have been divided into two groups, following roughly--but not necessarily--the above classification into the construction and application stages of economic modelling. The papers in the first group focus on the identification of dynamic and static systems, while the papers in the second group address dynamic optimization problems.
System-Theoretic Methods in Economic Modelling II complements the editor's earlier volume, bringing together current research efforts integrating system-theoretic concepts with economic modelling processes. The range of papers presented here goes beyond the long-accepted control-theoretic contributions in dynamic optimization and focuses on system-theoretic methods in the construction as well as the application stages of economic modelling. This volume initiates new and intensifies existing debate between researchers and practitioners within and across the disciplines involved, with the objective of encouraging interdisciplinary research. The papers are split into four sections - estimation, filtering and smoothing problems in the context of state space modelling; applying the state space concept to financial modelling; modelling rational expectation; and a miscellaneous section including a follow-up case study by Tse and Khilnani on their integrated system model for a fishery management process, which featured in the first volume.
Model Building is the most fruitful area of economics, designed to solve real-world problems using all available methods such as mathematical, computational and analytical, without distinction. Wherever necessary, we should not be reluctant to develop new techniques, whether mathematical or computational. That is the philosophy of this volume. The volume is divided into three distinct parts: Methods, Theory and Applications. The Methods section is in turn subdivided into Mathematical Programming and Econometrics and Adaptive Control System, which are widely used in econometric analysis. The impacts of fiscal policy in a regime with independent monetary authority and dynamic models of environmental taxation are considered. In the section on "Modelling Business Organization," a model of a Japanese organization is presented. Furthermore, a model suitable for an efficient budget management of a health service unit by applying goal programming method is analyzed, taking into account various socio-economic factors. This is followed by a section on "Modelling National Economies," in which macroeconometric models for the EU member countries are analyzed, to find instruments that stabilize inflation with coordinated action.
This book presents general methods for the design of economic model predictive control (EMPC) systems for broad classes of nonlinear systems that address key theoretical and practical considerations including recursive feasibility, closed-loop stability, closed-loop performance, and computational efficiency. Specifically, the book proposes: Lyapunov-based EMPC methods for nonlinear systems; two-tier EMPC architectures that are highly computationally efficient; and EMPC schemes handling explicitly uncertainty, time-varying cost functions, time-delays and multiple-time-scale dynamics. The proposed methods employ a variety of tools ranging from nonlinear systems analysis, through Lyapunov-based control techniques to nonlinear dynamic optimization. The applicability and performance of the proposed methods are demonstrated through a number of chemical process examples. The book presents state-of-the-art methods for the design of economic model predictive control systems for chemical processes.In addition to being mathematically rigorous, these methods accommodate key practical issues, for example, direct optimization of process economics, time-varying economic cost functions and computational efficiency. Numerous comments and remarks providing fundamental understanding of the merging of process economics and feedback control into a single framework are included. A control engineer can easily tailor the many detailed examples of industrial relevance given within the text to a specific application. The authors present a rich collection of new research topics and references to significant recent work making Economic Model Predictive Control an important source of information and inspiration for academics and graduate students researching the area and for process engineers interested in applying its ideas.
Comprises lectures given at Tel Aviv University and Oxford University in 1990.
The second edition of a rigorous and example-driven introduction to topics in economic dynamics that emphasizes techniques for modeling dynamic systems. This text provides an introduction to the modern theory of economic dynamics, with emphasis on mathematical and computational techniques for modeling dynamic systems. Written to be both rigorous and engaging, the book shows how sound understanding of the underlying theory leads to effective algorithms for solving real-world problems. The material makes extensive use of programming examples to illustrate ideas, bringing to life the abstract concepts in the text. Key topics include algorithms and scientific computing, simulation, Markov models, and dynamic programming. Part I introduces fundamentals and part II covers more advanced material. This second edition has been thoroughly updated, drawing on recent research in the field. New for the second edition: “Programming-language agnostic” presentation using pseudocode. New chapter 1 covering conceptual issues concerning Markov chains such as ergodicity and stability. New focus in chapter 2 on algorithms and techniques for program design and high-performance computing. New focus on household problems rather than optimal growth in material on dynamic programming. Solutions to many exercises, code, and other resources available on a supplementary website.
In financially constrained health systems across the world, increasing emphasis is being placed on the ability to demonstrate that health care interventions are not only effective, but also cost-effective. This book deals with decision modelling techniques that can be used to estimate the value for money of various interventions including medical devices, surgical procedures, diagnostic technologies, and pharmaceuticals. Particular emphasis is placed on the importance of the appropriate representation of uncertainty in the evaluative process and the implication this uncertainty has for decision making and the need for future research. This highly practical guide takes the reader through the key principles and approaches of modelling techniques. It begins with the basics of constructing different forms of the model, the population of the model with input parameter estimates, analysis of the results, and progression to the holistic view of models as a valuable tool for informing future research exercises. Case studies and exercises are supported with online templates and solutions. This book will help analysts understand the contribution of decision-analytic modelling to the evaluation of health care programmes. ABOUT THE SERIES: Economic evaluation of health interventions is a growing specialist field, and this series of practical handbooks will tackle, in-depth, topics superficially addressed in more general health economics books. Each volume will include illustrative material, case histories and worked examples to encourage the reader to apply the methods discussed, with supporting material provided online. This series is aimed at health economists in academia, the pharmaceutical industry and the health sector, those on advanced health economics courses, and health researchers in associated fields.
A textbook for a first-year PhD course in mathematics for economists and a reference for graduate students in economics.
The second edition of this monograph describes the set-theoretic approach for the control and analysis of dynamic systems, both from a theoretical and practical standpoint. This approach is linked to fundamental control problems, such as Lyapunov stability analysis and stabilization, optimal control, control under constraints, persistent disturbance rejection, and uncertain systems analysis and synthesis. Completely self-contained, this book provides a solid foundation of mathematical techniques and applications, extensive references to the relevant literature, and numerous avenues for further theoretical study. All the material from the first edition has been updated to reflect the most recent developments in the field, and a new chapter on switching systems has been added. Each chapter contains examples, case studies, and exercises to allow for a better understanding of theoretical concepts by practical application. The mathematical language is kept to the minimum level necessary for the adequate formulation and statement of the main concepts, yet allowing for a detailed exposition of the numerical algorithms for the solution of the proposed problems. Set-Theoretic Methods in Control will appeal to both researchers and practitioners in control engineering and applied mathematics. It is also well-suited as a textbook for graduate students in these areas. Praise for the First Edition "This is an excellent book, full of new ideas and collecting a lot of diverse material related to set-theoretic methods. It can be recommended to a wide control community audience." - B. T. Polyak, Mathematical Reviews "This book is an outstanding monograph of a recent research trend in control. It reflects the vast experience of the authors as well as their noticeable contributions to the development of this field...[It] is highly recommended to PhD students and researchers working in control engineering or applied mathematics. The material can also be used for graduate courses in these areas." - Octavian Pastravanu, Zentralblatt MATH
Economic Modeling Using Artificial Intelligence Methods examines the application of artificial intelligence methods to model economic data. Traditionally, economic modeling has been modeled in the linear domain where the principles of superposition are valid. The application of artificial intelligence for economic modeling allows for a flexible multi-order non-linear modeling. In addition, game theory has largely been applied in economic modeling. However, the inherent limitation of game theory when dealing with many player games encourages the use of multi-agent systems for modeling economic phenomena. The artificial intelligence techniques used to model economic data include: multi-layer perceptron neural networks radial basis functions support vector machines rough sets genetic algorithm particle swarm optimization simulated annealing multi-agent system incremental learning fuzzy networks Signal processing techniques are explored to analyze economic data, and these techniques are the time domain methods, time-frequency domain methods and fractals dimension approaches. Interesting economic problems such as causality versus correlation, simulating the stock market, modeling and controling inflation, option pricing, modeling economic growth as well as portfolio optimization are examined. The relationship between economic dependency and interstate conflict is explored, and knowledge on how economics is useful to foster peace – and vice versa – is investigated. Economic Modeling Using Artificial Intelligence Methods deals with the issue of causality in the non-linear domain and applies the automatic relevance determination, the evidence framework, Bayesian approach and Granger causality to understand causality and correlation. Economic Modeling Using Artificial Intelligence Methods makes an important contribution to the area of econometrics, and is a valuable source of reference for graduate students, researchers and financial practitioners.