Download Free System Level Synthesis For Low Power Media Processors Book in PDF and EPUB Free Download. You can read online System Level Synthesis For Low Power Media Processors and write the review.

System-Level Synthesis deals with the concurrent design of electronic applications, including both hardware and software. The issue has become the bottleneck in the design of electronic systems, including both hardware and software, in several major industrial fields, including telecommunications, automotive and aerospace engineering. The major difficulty with the subject is that it demands contributions from several research fields, including system specification, system architecture, hardware design, and software design. Most existing book cover well only a few aspects of system-level synthesis. The present volume presents a comprehensive discussion of all the aspects of system-level synthesis. Each topic is covered by a contribution written by an international authority on the subject.
This book is the first in aseries on novellow power design architectures, methods and design practices. It results from of a large European project started in 1997, whose goal is to promote the further development and the faster and wider industrial use of advanced design methods for reducing the power consumption of electronic systems. Low power design became crucial with the wide spread of portable information and cornrnunication terminals, where a small battery has to last for a long period. High performance electronics, in addition, suffers from a permanent increase of the dissipated power per square millimetre of silicon, due to the increasing eIock-rates, which causes cooling and reliability problems or otherwise limits the performance. The European Union's Information Technologies Programme 'Esprit' did there fore launch a 'Pilot action for Low Power Design' , wh ich eventually grew to 19 R&D projects and one coordination project, with an overall budget of 14 million Euro. It is meanwhile known as European Low Power Initiative for Electronic System Design (ESD-LPD) and will be completed by the end of 2001. It involves 30 major Euro pean companies and 20 well-known institutes. The R&D projects aims to develop or demonstrate new design methods for power reduction, while the coordination project takes care that the methods, experiences and results are properly documented and pub licised.
The power consumption of microprocessors is one of the most important challenges of high-performance chips and portable devices. In chapters drawn from Piguet's recently published Low-Power Electronics Design, this volume addresses the design of low-power microprocessors in deep submicron technologies. It provides a focused reference for specialists involved in systems-on-chips, from low-power microprocessors to DSP cores, reconfigurable processors, memories, ad-hoc networks, and embedded software. Low-Power Processors and Systems on Chips is organized into three broad sections for convenient access. The first section examines the design of digital signal processors for embedded applications and techniques for reducing dynamic and static power at the electrical and system levels. The second part describes several aspects of low-power systems on chips, including hardware and embedded software aspects, efficient data storage, networks-on-chips, and applications such as routing strategies in wireless RF sensing and actuating devices. The final section discusses embedded software issues, including details on compilers, retargetable compilers, and coverification tools. Providing detailed examinations contributed by leading experts, Low-Power Processors and Systems on Chips supplies authoritative information on how to maintain high performance while lowering power consumption in modern processors and SoCs. It is a must-read for anyone designing modern computers or embedded systems.
This self-contained book addresses the need for analysis, characterization, estimation, and optimization of the various forms of power dissipation in the presence of process variations of nano-CMOS technologies. The authors show very large-scale integration (VLSI) researchers and engineers how to minimize the different types of power consumption of digital circuits. The material deals primarily with high-level (architectural or behavioral) energy dissipation.
Data Access and Storage Management for Embedded Programmable Processors gives an overview of the state-of-the-art in system-level data access and storage management for embedded programmable processors. The targeted application domain covers complex embedded real-time multi-media and communication applications. Many of these applications are data-dominated in the sense that their cost related aspects, namely power consumption and footprint are heavily influenced (if not dominated) by the data access and storage aspects. The material is mainly based on research at IMEC in this area in the period 1996-2001. In order to deal with the stringent timing requirements and the data dominated characteristics of this domain, we have adopted a target architecture style that is compatible with modern embedded processors, and we have developed a systematic step-wise methodology to make the exploration and optimization of such applications feasible in a source-to-source precompilation approach.
This book presents novel research techniques, algorithms, methodologies and experimental results for high level power estimation and power aware high-level synthesis. Readers will learn to apply such techniques to enable design flows resulting in shorter time to market and successful low power ASIC/FPGA design.
This book presents techniques for energy reduction in adaptive embedded multimedia systems, based on dynamically reconfigurable processors. The approach described will enable designers to meet performance/area constraints, while minimizing video quality degradation, under various, run-time scenarios. Emphasis is placed on implementing power/energy reduction at various abstraction levels. To enable this, novel techniques for adaptive energy management at both processor architecture and application architecture levels are presented, such that both hardware and software adapt together, minimizing overall energy consumption under unpredictable, design-/compile-time scenarios.
Mobile multimedia broadcasting compasses a broad range of topics including radio propagation, modulation and demodulation, error control, signal compression and coding, transport and time slicing, system on chip real-time implementation in ha- ware, software and system levels. The major goal of this technology is to bring multimedia enriched contents to handheld devices such as mobile phones, portable digital assistants, and media players through radio transmission or internet pro- col (IP) based broadband networks. Research and development of mobile multi- dia broadcasting technologies are now explosively growing and regarded as new killer applications. A number of mobile multimedia broadcasting standards related to transmission, compression and multiplexing now coexist and are being ext- sively further developed. The development and implementation of mobile multi- dia broadcasting systems are very challenging tasks and require the huge efforts of the related industry, research and regulatory authorities so as to bring the success. From an implementation design and engineering practice point of view, this book aims to be the ?rst single volume to provide a comprehensive and highly coherent treatment for multiple standards of mobile multimedia broadcasting by covering basic principles, algorithms, design trade-off, and well-compared implementation system examples. This book is organized into 4 parts with 22 chapters.
The phenomenal increases in computer system performance in recent years have been accompanied by a commensurate increase in power and energy dissipation. The latter has directly resulted in demand for expensive packaging and cooling technology, an increase in product cost, and a decrease in product reliability in all segments of the computing market. Moreover, the higher power/energy dissipation has signi cantly reduced battery life in portable systems. While - stem designers have traditionally relied on circuit-level techniques to reduce - wer/energy, there is a growing need to address power/energy dissipation at all levels of the computer system. We are pleased to welcome you to the proceedings of the Power-Aware C- puter Systems (PACS 2000) workshop. PACS 2000 was the rst workshop in its series and its aim was to bring together experts from academia and industry to address power-/energy-awareness at all levels of computer systems. In these p- ceedings, we bring you several excellent research contributions spanning a wide spectrum of areas in power-aware systems, from application all the way to c- pilers and microarchitecture, and to power/performance estimating models and tools. We have grouped the contributions into the following speci c categories: (1) power-aware microarchitectural/circuit techniques, (2) application/compiler power optimizations, (3) exploiting opportunity for power optimization in - struction scheduling and cache memories, and (4) power/performance models and tools.
Low Power Design in Deep Submicron Electronics deals with the different aspects of low power design for deep submicron electronics at all levels of abstraction from system level to circuit level and technology. Its objective is to guide industrial and academic engineers and researchers in the selection of methods, technologies and tools and to provide a baseline for further developments. Furthermore the book has been written to serve as a textbook for postgraduate student courses. In order to achieve both goals, it is structured into different chapters each of which addresses a different phase of the design, a particular level of abstraction, a unique design style or technology. These design-related chapters are amended by motivations in Chapter 2, which presents visions both of future low power applications and technology advancements, and by some advanced case studies in Chapter 9. From the Foreword: `... This global nature of design for low power was well understood by Wolfgang Nebel and Jean Mermet when organizing the NATO workshop which is the origin of the book. They invited the best experts in the field to cover all aspects of low power design. As a result the chapters in this book are covering deep-submicron CMOS digital system design for low power in a systematic way from process technology all the way up to software design and embedded software systems. Low Power Design in Deep Submicron Electronics is an excellent guide for the practicing engineer, the researcher and the student interested in this crucial aspect of actual CMOS design. It contains about a thousand references to all aspects of the recent five years of feverish activity in this exciting aspect of design.' Hugo de Man Professor, K.U. Leuven, Belgium Senior Research Fellow, IMEC, Belgium