Download Free System Analysis Intelligent Computing Book in PDF and EPUB Free Download. You can read online System Analysis Intelligent Computing and write the review.

The book contains the newest advances related to research and development of complex intellectual systems of various nature, acting under conditions of uncertainty and multifactor risks, intelligent systems for decision-making, high performance computing, state-of-the-art information technologies for needs of science, industry, economy, and environment. The most important problems of sustainable development and global threats estimation, forecast and foresight in tasks of planning and strategic decision-making are investigated. This monograph will be useful to researchers, post-graduates, and advanced students specializing in system analysis, decision-making, strategic planning or engineering design, fundamentals of computational Intelligence, artificial Intelligence systems based on hybrid neural networks, big data, and data mining.
Information granules, as encountered in natural language, are implicit in nature. To make them fully operational so they can be effectively used to analyze and design intelligent systems, information granules need to be made explicit. An emerging discipline, granular computing focuses on formalizing information granules and unifying them to create a coherent methodological and developmental environment for intelligent system design and analysis. Granular Computing: Analysis and Design of Intelligent Systems presents the unified principles of granular computing along with its comprehensive algorithmic framework and design practices. Introduces the concepts of information granules, information granularity, and granular computing Presents the key formalisms of information granules Builds on the concepts of information granules with discussion of higher-order and higher-type information granules Discusses the operational concept of information granulation and degranulation by highlighting the essence of this tandem and its quantification in terms of the associated reconstruction error Examines the principle of justifiable granularity Stresses the need to look at information granularity as an important design asset that helps construct more realistic models of real-world systems or facilitate collaborative pursuits of system modeling Highlights the concepts, architectures, and design algorithms of granular models Explores application domains where granular computing and granular models play a visible role, including pattern recognition, time series, and decision making Written by an internationally renowned authority in the field, this innovative book introduces readers to granular computing as a new paradigm for the analysis and synthesis of intelligent systems. It is a valuable resource for those engaged in research and practical developments in computer, electrical, industrial, manufacturing, and biomedical engineering. Building from fundamentals, the book is also suitable for readers from nontechnical disciplines where information granules assume a visible position.
This second and revised edition contains a detailed introduction to the key classes of intelligent data analysis methods. The twelve coherently written chapters by leading experts provide complete coverage of the core issues. The first half of the book is devoted to the discussion of classical statistical issues. The following chapters concentrate on machine learning and artificial intelligence, rule induction methods, neural networks, fuzzy logic, and stochastic search methods. The book concludes with a chapter on visualization and an advanced overview of IDA processes.
Computer vision and object recognition are two technological methods that are frequently used in various professional disciplines. In order to maintain high levels of quality and accuracy of services in these sectors, continuous enhancements and improvements are needed. The implementation of artificial intelligence and machine learning has assisted in the development of digital imaging, yet proper research on the applications of these advancing technologies is lacking. Applications of Advanced Machine Intelligence in Computer Vision and Object Recognition: Emerging Research and Opportunities explores the theoretical and practical aspects of modern advancements in digital image analysis and object detection as well as its applications within healthcare, security, and engineering fields. Featuring coverage on a broad range of topics such as disease detection, adaptive learning, and automated image segmentation, this book is ideally designed for engineers, physicians, researchers, academicians, practitioners, scientists, industry professionals, scholars, and students seeking research on the current developments in object recognition using artificial intelligence.
The book reports on new theories and applications in the field of intelligent systems and computing. It covers computational and artificial intelligence methods, as well as advances in computer vision, current issue in big data and cloud computing, computation linguistics, cyber-physical systems as well as topics in intelligent information management. Written by active researchers, the different chapters are based on contributions presented at the workshop in intelligent systems and computing (ISC), held during CSIT 2016, September 6-9, and jointly organized by the Lviv Polytechnic National University, Ukraine, the Kharkiv National University of Radio Electronics, Ukraine, and the Technical University of Lodz, Poland, under patronage of Ministry of Education and Science of Ukraine. All in all, the book provides academics and professionals with extensive information and a timely snapshot of the field of intelligent systems, and it is expected to foster new discussions and collaborations among different groups.
Soft Computing Based Medical Image Analysis presents the foremost techniques of soft computing in medical image analysis and processing. It includes image enhancement, segmentation, classification-based soft computing, and their application in diagnostic imaging, as well as an extensive background for the development of intelligent systems based on soft computing used in medical image analysis and processing. The book introduces the theory and concepts of digital image analysis and processing based on soft computing with real-world medical imaging applications. Comparative studies for soft computing based medical imaging techniques and traditional approaches in medicine are addressed, providing flexible and sophisticated application-oriented solutions. - Covers numerous soft computing approaches, including fuzzy logic, neural networks, evolutionary computing, rough sets and Swarm intelligence - Presents transverse research in soft computing formation from various engineering and industrial sectors in the medical domain - Highlights challenges and the future scope for soft computing based medical analysis and processing techniques
This book is a collection of papers presented at the International Conference on Intelligent Computing, Information and Control Systems (ICICCS 2021). It encompasses various research works that help to develop and advance the next-generation intelligent computing and control systems. The book integrates the computational intelligence and intelligent control systems to provide a powerful methodology for a wide range of data analytics issues in industries and societal applications. The book also presents the new algorithms and methodologies for promoting advances in common intelligent computing and control methodologies including evolutionary computation, artificial life, virtual infrastructures, fuzzy logic, artificial immune systems, neural networks and various neuro-hybrid methodologies. This book is pragmatic for researchers, academicians and students dealing with mathematically intransigent problems.
Intelligent Computational Systems presents current and future developments in intelligent computational systems in a multi-disciplinary context. Readers will learn about the pervasive and ubiquitous roles of artificial intelligence (AI) and gain a perspective about the need for intelligent systems to behave rationally when interacting with humans in complex and realistic domains. This reference covers widespread applications of AI discussed in 11 chapters which cover topics such as AI and behavioral simulations, AI schools, automated negotiation, language analysis and learning, financial prediction, sensor management, Multi-agent systems, and much more. This reference work is will assist researchers, advanced-level students and practitioners in information technology and computer science fields interested in the broad applications of AI.
This book focuses on the core areas of computing and their applications in the real world. Presenting papers from the Computing Conference 2020 covers a diverse range of research areas, describing various detailed techniques that have been developed and implemented. The Computing Conference 2020, which provided a venue for academic and industry practitioners to share new ideas and development experiences, attracted a total of 514 submissions from pioneering academic researchers, scientists, industrial engineers and students from around the globe. Following a double-blind, peer-review process, 160 papers (including 15 poster papers) were selected to be included in these proceedings. Featuring state-of-the-art intelligent methods and techniques for solving real-world problems, the book is a valuable resource and will inspire further research and technological improvements in this important area.