Download Free Synthetic Multidentate Macrocyclic Compounds Book in PDF and EPUB Free Download. You can read online Synthetic Multidentate Macrocyclic Compounds and write the review.

Synthetic Multidentate Macrocyclic Compounds attempts to bring together selected chapters in which the authors discuss in depth investigations in important areas of macrocycle research. The chapters deal mainly with macrocyclic compounds (saturated polyethers and their derivatives), and macrobicyclic compounds (cryptates). The book contains six chapters and opens with a first-hand account of the initial synthesis of the cyclic polyethers. This is followed by separate chapters on the synthesis of cyclic polyethers, polyether amines, and polyether sulfides; the synthesis of multidentate compounds; and the structure of synthetic macrocyclic compounds and their cation complexes. Subsequent chapters deal with the rates of reactions and the mechanism by which synthetic macrocyclic ligands complex substrates in solution; and commercial applications of the synthetic macrocyclic ligands. This book is primarily aimed at researchers and students in organic, physical, analytical, and inorganic chemistry, and in chemical engineering. However, it will also be of interest to many in the areas of biology, biochemistry, and physiology. Extensive literature references are found in each chapter.
This reference details the theory and application of cation complexation, including the design and synthesis of various cyclic systems, these materials' use as transport systems, in complexation and selectivity studies by macrocyclic systems, and methodologies for understanding these phenomena. In a
The scientific and practical interest in coronands (crown ethers), cryptands, podands as complexing agents for cations as well as for anions and neutral low molecular species is undeniable 1,2). The chemistry of crown compounds is steadily increasing. About 250 original papers dealing with crown chemistry appeared only in 1980. New molecules· with crown ether properties are constantly synthesized and new applications discov,?red. Owing to lack of space, only a small number of the original publications is men tioned here. Thus, in the literature compilation only some, but relevant works are selected for each chapter. Whenever possible, reference is made to reviews or review-like articles alone by means of which origin,al works can be consulted. The reviews given under ref. 1) are considered to be the most relevant. The formulae presented in the figures should be understood as representative structures outlining a specific field. 2 Classification of Oligo-/Multidentate Neutral Ligands and of their Complexes Today, a distinction is made between the classical ring oligoethers (crown ethers) and monocyclic coronands, oligocyclic spherical cryptands and the acyclic podands with respect to topological aspects 3). This classification and the topology are illustrated in Fig. 1, each figure representing the minimum number of donor atoms and chain segments characteristic of each class of compounds. Multidentate mono cyclic ligands with any type of donor atoms are called coronands ("crown compounds"), while the term crown ether should be reserved for cyclic oligoethers exclusively containing oxygen as donor atom.
The synthesis of macrocycles is an art in itself. Template-controlled synthesis provides elegant access to fascinating macrocyclic structures. Polyazamacrocycles, crown ethers, cryptands, rotaxanes, knots -- the range of macrocyclic compounds is as broad as their potential application as molecular switches, in ion exchange, electron transfer or catalysis. This book provides authoritative information on all aspects of template-controlled macrocyclizations. It covers in depth the current state of research on template processes - novel synthetic techniques and mechanistic approaches. The critical discussion of the diverse synthetic routes includes the detailed characterization of the broad variety of macrocyclic products. References to applications of macrocyclic compounds and over 1,500 citations make this handbook an indispensable tool for chemists in academia and industry. Researchers in organic and supramolecular chemistry, biotechnology, and inorganic chemistry will find inspiration for the design, synthesis, and myriad uses of new synthetic macrocycles.
This reference describes standard and nonstandard coordination modes of ligands in complexes, the intricacies of polyhedron-programmed and regioselective synthesis, and the controlled creation of coordination compounds such as molecular and hn-p-complexes, chelates, and homo- and hetero-nuclear compounds. It offers a clear and concise review of modern synthetic techniques of metal complexes as well as lesser known gas- and solid-phase synthesis, electrosynthesis, and microwave and ultrasonic treatment of the reaction system. The authors pay special attention to o-hydroxyazomethines and their S-, Se-containing analogues, b-diketones, and quinines, among others, and examine the immediate interaction of ligands and metal salts or carbonyls.
This interesting work extensively describes newer applications of liquid membrane systems which contain molecular and/or ion recognizing carrier compounds and the related characteristic membrane materials. This volume focuses on the current knowledge about chemistry, biology and related technology of liquid membranes. It reviews the most recent advances in design and characteristics of synthetic liquid membrane transport. Additionally, this fascinating reference discusses up-to-date topics in the analytical and separation science, plus biomimetic membrane technology. Because this book is presented in a compact, understandable format, readers can start from biological cell membranes, then net aspects of host-guest chemistry for effective recognition of ions and molecules, followed by its application for artificial sensors-such as neuro-systems, functionalized new detergents, mechanochemical systems, and separation chemistry. This publication is ideal for graduate-level students and will stimulate university and industry researchers.
Through new perspectives from a mix of original monographs, biographies, autobiographical memoirs, edited collections of essays and documentary sources, translations, classic reprints, and pictorial volumes, this series will document the individuals, ideas, institutions, and innovations that have created the modern chemcial sciences.
Details laboratory and industrial synthesis and applications of oligomers-suggesting practical solutions to the on-the-job problems as well as exploring processing devices and techniques for industrial-scale production of new oligomer types.
Proceedings of the NATO Advanced Study Institute, Tabiano, Parma, Italy, May 21-June 1, 1979
This seminal series, first edited by Ernest Eliel, responsible for some of the major advances in stereochemistry and the winner of the ACS Priestley Medal in 1996, provides coverage of the major developments of the field of stereochemistry. The scope of this series is broadly defined to encompass all fields of chemical and biological sciences that are founded on molecular and supramolecular interactions. Insofar as chemical, physical, and biological properties are determined by molecular shape and structure, the importance of stereochemistry is fundamental to and consequential for all natural sciences. Topics in Stereochemistry serves as a multidisciplinary series that enriches all of chemistry. Aimed at advanced students, university professors and teachers as well as researchers in pharmaceutical, agricultural, biotechnological, polymer, materials, and fine chemical industries, Topics in Stereochemistry publishes definitive and scholarly reviews in stereochemistry and has long been recognized as the gold standard reference work in this field. Covering the effect of chirality on all aspects of molecular interaction from the fundamental physical chemical properties of molecules and their molecular physics to the application of chirality in new areas such as its applications in materials science, Topics in Stereochemistry explores a wide variety of properties, both physical and chemical of isomers with a view to their applications in a number of disciplines from biochemistry to materials science.