Download Free Synthesis Of Optimum Nonlinear Control Systems Book in PDF and EPUB Free Download. You can read online Synthesis Of Optimum Nonlinear Control Systems and write the review.

Discrete-Time Inverse Optimal Control for Nonlinear Systems proposes a novel inverse optimal control scheme for stabilization and trajectory tracking of discrete-time nonlinear systems. This avoids the need to solve the associated Hamilton-Jacobi-Bellman equation and minimizes a cost functional, resulting in a more efficient controller. Design More Efficient Controllers for Stabilization and Trajectory Tracking of Discrete-Time Nonlinear Systems The book presents two approaches for controller synthesis: the first based on passivity theory and the second on a control Lyapunov function (CLF). The synthesized discrete-time optimal controller can be directly implemented in real-time systems. The book also proposes the use of recurrent neural networks to model discrete-time nonlinear systems. Combined with the inverse optimal control approach, such models constitute a powerful tool to deal with uncertainties such as unmodeled dynamics and disturbances. Learn from Simulations and an In-Depth Case Study The authors include a variety of simulations to illustrate the effectiveness of the synthesized controllers for stabilization and trajectory tracking of discrete-time nonlinear systems. An in-depth case study applies the control schemes to glycemic control in patients with type 1 diabetes mellitus, to calculate the adequate insulin delivery rate required to prevent hyperglycemia and hypoglycemia levels. The discrete-time optimal and robust control techniques proposed can be used in a range of industrial applications, from aerospace and energy to biomedical and electromechanical systems. Highlighting optimal and efficient control algorithms, this is a valuable resource for researchers, engineers, and students working in nonlinear system control.
"Analysis and Design of Nonlinear Control Systems" provides a comprehensive and up to date introduction to nonlinear control systems, including system analysis and major control design techniques. The book is self-contained, providing sufficient mathematical foundations for understanding the contents of each chapter. Scientists and engineers engaged in the field of Nonlinear Control Systems will find it an extremely useful handy reference book. Dr. Daizhan Cheng, a professor at Institute of Systems Science, Chinese Academy of Sciences, has been working on the control of nonlinear systems for over 30 years and is currently a Fellow of IEEE and a Fellow of IFAC, he is also the chairman of Technical Committee on Control Theory, Chinese Association of Automation.
Designed for one-semester introductory senior-or graduate-level course, the authors provide the student with an introduction of analysis techniques used in the design of nonlinear and optimal feedback control systems. There is special emphasis on the fundamental topics of stability, controllability, and optimality, and on the corresponding geometry associated with these topics. Each chapter contains several examples and a variety of exercises.
Over the past three decades R.E. Kalman has been one of the most influential personalities in system and control theory. His ideas have been instrumental in a variety of areas. This is a Festschrift honoring his 60th birthday. It contains contributions from leading researchers in the field giving an account of the profound influence of his ideas in a number of areas of active research in system and control theory. For example, since their introduction by Kalman in the early 60's, the concepts of controllability and observability of dynamical systems with inputs, have been the corner stone of the great majority of investigations in the field.