Download Free Synthesis Of A Nonlinear Control System Book in PDF and EPUB Free Download. You can read online Synthesis Of A Nonlinear Control System and write the review.

This book presents a modern perspective on the modelling, analysis, and synthesis ideas behind convex-optimisation-based control of nonlinear systems: it embeds them in models with convex structures. Analysis and Synthesis of Nonlinear Control Systems begins with an introduction to the topic and a discussion of the problems to be solved. It then explores modelling via convex structures, including quasi-linear parameter-varying, Takagi–Sugeno models, and linear fractional transformation structures. The authors cover stability analysis, addressing Lyapunov functions and the stability of polynomial models, as well as the performance and robustness of the models. With detailed examples, simulations, and programming code, this book will be useful to instructors, researchers, and graduate students interested in nonlinear control systems.
The purpose of this book is twofold: To survey control system design methods based on the system inversion technique and to collect into one place the many recent results in the field. It has been known for some time that inverse systems may be used to solve numerous control problems. Despite the importance and conceptual simplicity of this topic there appears to be no monograph written on it. The purpose of this work is therefore to present and apply a systematic design method which bases itself on the fundamental system property of invertibility. Many different theoretical and practical aspects are considered in this volume working from elementary topics in the first section to current research in the second.
The purpose of this book is to present a self-contained description of the fun damentals of the theory of nonlinear control systems, with special emphasis on the differential geometric approach. The book is intended as a graduate text as weil as a reference to scientists and engineers involved in the analysis and design of feedback systems. The first version of this book was written in 1983, while I was teach ing at the Department of Systems Science and Mathematics at Washington University in St. Louis. This new edition integrates my subsequent teaching experience gained at the University of Illinois in Urbana-Champaign in 1987, at the Carl-Cranz Gesellschaft in Oberpfaffenhofen in 1987, at the University of California in Berkeley in 1988. In addition to a major rearrangement of the last two Chapters of the first version, this new edition incorporates two additional Chapters at a more elementary level and an exposition of some relevant research findings which have occurred since 1985.
This eagerly awaited follow-up to Nonlinear Control Systems incorporates recent advances in the design of feedback laws, for the purpose of globally stabilizing nonlinear systems via state or output feedback. The author is one of the most prominent researchers in the field.
Quantitative Feedback Design of Linear and Nonlinear Control Systems is a self-contained book dealing with the theory and practice of Quantitative Feedback Theory (QFT). The author presents feedback synthesis techniques for single-input single-output, multi-input multi-output linear time-invariant and nonlinear plants based on the QFT method. Included are design details and graphs which do not appear in the literature, which will enable engineers and researchers to understand QFT in greater depth. Engineers will be able to apply QFT and the design techniques to many applications, such as flight and chemical plant control, robotics, space, vehicle and military industries, and numerous other uses. All of the examples were implemented using Matlab® Version 5.3; the script file can be found at the author's Web site. QFT results in efficient designs because it synthesizes a controller for the exact amount of plant uncertainty, disturbances and required specifications. Quantitative Feedback Design of Linear and Nonlinear Control Systems is a pioneering work that illuminates QFT, making the theory - and practice - come alive.