Download Free Synthesis Of 2 Amine Modified Nucleosides And Oligonucleotides To Study Rna Catalysis Book in PDF and EPUB Free Download. You can read online Synthesis Of 2 Amine Modified Nucleosides And Oligonucleotides To Study Rna Catalysis and write the review.

A collection of powerful new techniques for oligonucleotide synthesis and for the use of modified oligonucleotides in biotechnology. Among the protocol highlights are a novel two-step process that yields a high purity, less costly, DNA, the synthesis of phosphorothioates using new sulfur transfer agents, the synthesis of LNA, peptide conjugation methods to improve cellular delivery and cell-specific targeting, and triple helix formation. The applications include using molecular beacons to monitor the PCR amplification process, nuclease footprinting to study the sequence-selective binding of small molecules of DNA, nucleic acid libraries, and the use of small interference RNA (siRNA) as an inhibitor of gene expression.
Palladium-Catalyzed Modification of Nucleosides, Nucleotides and Oligonucleotides describes the procedures and protocols related to the modification of nucleosides, nucleotides and oligonucleotides via Pd-mediated cross-coupling processes. The book highlights the growing area of nucleic acid modification and how Pd-mediated coupling reactions can assist this development. Users will find key synthetic protocols for these reactions in this latest volume in the Latest Trends in Palladium Chemistry series. As most of the research in the field of antiviral agents has centered on the use of modified nucleosides that have exhibited promising activity, this book provides an up-to-date reference for both professionals in industry and other interested parties. Provides synthetic routes for useful nucleoside molecules, information otherwise found only through time-consuming literature searches Covers metal-mediated and metal-catalyzed cross coupling processes of nucleosides and related compounds Includes Suzuki-Miyaura, Stille and Sonogashira reactions, as well as C-H bond functionalization Highlights the growing area of nucleic acid modification and how Pd-mediated coupling reactions can assist
"A series of studies on 2'-fluorinated and 4'-chalcogen-modified nucleic acids is described, mainly directed toward the development of better gene silencing therapeutics. NMR/MD and osmotic stressing were used to compare the structure and hydration of 10-bp 2'F-ANA:RNA, ANA:RNA and DNA:RNA duplexes. The 2'F-ANA and ANA strands both featured sugars that pucker in the east (O4'-endo) conformation, as previously observed for hairpin structures containing hybrid stems. Osmotic stressing suggested that the 2'F-ANA:RNA duplex liberated fewer molecules of water upon melting than did ANA:RNA, which may give the former an entropic advantage that contributes to its far greater thermal stability. The stability of 2'F-ANA to acid-mediated hydrolysis was compared to that of DNA and RNA. Several phosphodiester (PO) or phosphorothioate (PS) 2'F-ANA sequences were incubated at pH ~1.2, and virtually no cleavage was observed after 2 days. In contrast, rapid degradation was observed for DNA (t1/2 = minutes) and RNA (t1/2 = hours (PO) or days (PS)). The nuclease-catalyzed hydrolysis of 2'F-ANA was also explored in detail. One diastereomer of the PS-2'F-ANA linkage was much more vulnerable to enzymatic cleavage than the other, which is parallel to the properties observed for PS-DNA. We also show that the nuclease stability induced by 2'F-ANA depends on the oligonucleotide sequence. An improved synthesis of 2'-deoxy-2'-fluoro-5-methyl-4'-thioarabinouridine (4'S-FMAU) is described. Participation of the 3'-O-benzoyl protecting group in the thiosugar precursor influenced the stereochemistry of the N-glycosylation reaction in nonpolar solvents, permitting a higher beta/alpha ratio than previously observed for similar Lewis acid-catalyzed glycosylations. The nucleoside adopted a predominantly northern conformation, in contrast to 2'-deoxy-2'-fluoro-5-methylarabinouridine (FMAU), which adopts a predominantly southeast conform"--
Naturally occurring RNA always contains numerous biochemically altered nucleotides. They are formed by enzymatic modification of the primary transcripts during the complex RNA maturation process designated RNA modification. A large number of enzymes catalyzing the formation of these modified nucleosides or converting one canonical base into another at the posttranscriptional level have been studied for many years, but only recently have systematic and comparative studies begun. The functions of individual enzymes and/or the modified/edited nucleosides in RNA, however, have remained largely ignored. This book provides advance information on RNA modification, including the associated editing machinery, while offering the reader some perspective on the significance of such modifications in fine-tuning the structure and functions of mature RNA molecules and hence the ability to influence the efficiency and accuracy of genetic expression. Outstanding scientists who are actively working on RNA modification/editing processes have provided up-to-date information on these intriguing cellular processes that have been generated over the course of millions of years in all living organisms. Each review has been written and illustrated for a large audience of readers, not only specialists in the field, but also for advanced students or researchers who want to learn more about recent progress in RNA modification and editing.
Good methods must be reliable, well-tested, and honed to minimize the time and expense required to achieve the desired results. CPNC provides a continuously growing and evolving set of protocols that allows researchers to benefit from the experience of other researchers around the world. The core manual provides a comprehensive set of protocols that have been compiled, revised, and streamlined over the last 6 years. Quarterly updates provide new protocols in emerging areas of research as well as continued advances and new applications for fundamental methods. The book is designed to grow and change with the field of nucleic acid chemistry. Fundamental nucleoside chemistry methods include sugar-base condensation, phosphorylation, and nucleoside protection. Methods for oligonucleotide synthesis include H-phosphonate and phosphoramidite approaches, solid-phase and solution-phase synthesis, large-scale synthesis, synthesis for modified and unmodified oligonucleotides, conjugation of oligonucleotides, synthesis without base protection, and synthesis on microarrays. More specialized synthetic methods include synthesis of biologically active nucleosides and prodrugs. Purification and characterization methods are detailed. Advanced methods include biophysical analysis, combinatorial methods, and nanotechnology. Each protocol includes rationale for choosing appropriate methods, step-by-step procedures, complete recipes, anticipated results, characterization data, and troubleshooting, as well as background and recommended reading. The level of procedural detail is far beyond that found in the research literature, and tips and comments from authors are geared towards ensuring reliable duplication in the laboratory.
This book presents the latest knowledge on a broad range of topics relating to the synthesis of natural and artificial oligonucleotides with therapeutic potential. Nucleic acid-based therapeutics are attracting much attention, and numerous therapeutic oligonucleotides, such as antisense oligonucleotides, siRNAs, splice-switching oligonucleotides, and nucleic acid aptamers, are being evaluated in clinical trials for the treatment of a variety of diseases. Synthesis of Therapeutic Oligonucleotides covers a broad range of topics in the field that are of high relevance to researchers, including the synthesis of natural and chemically modified oligonucleotides, the development of novel nucleic acid analogs, industrial scale synthesis and purification of oligonucleotides, and important aspects of chemistry, manufacturing, and controls (CMC). The aim is to provide new insights and inspire fresh ideas in nucleic acid chemistry that may ultimately lead to novel concepts and techniques and the discovery of more effective nucleic acid drugs. The book will be of high value for both established researchers in the field and students intending to specialize in nucleic acid chemistry research.
This book spans diverse aspects of modified nucleic acids, from chemical synthesis and spectroscopy to in vivo applications, and highlights studies on chemical modifications of the backbone and nucleobases. Topics discussed include fluorescent pyrimidine and purine analogs, enzymatic approaches to the preparation of modified nucleic acids, emission and electron paramagnetic resonance (EPR) spectroscopy for studying nucleic acid structure and dynamics, non-covalent binding of low- and high-MW ligands to nucleic acids and the design of unnatural base pairs. This unique book addresses new developments and is designed for graduate level and professional research purposes.
A review of innovative tools for creative nucleic acid chemists that open the door to novel probes and therapeutic agents Nucleic acids continue to gain importance as novel diagnostic and therapeutic agents. With contributions from noted scientists and scholars, Enzymatic and Chemical Synthesis of Nucleic Acid Derivatives is a practical reference that includes a wide range of approaches for the synthesis of designer nucleic acids and their derivatives. The book covers enzymatic (including chemo-enzymatic) methods, with a focus on the synthesis and incorporation of modified nucleosides. The authors also offer a review of innovative approaches for the non-enzymatic chemical synthesis of nucleic acids and their analogs and derivatives, highlighting especially challenging species. The book offers a concise review of the methods that prepare novel and heavily modified polynucleotides in sufficient amount and purity for most clinical and research applications. This important book: -Presents a timely and topical guide to the synthesis of designer nucleic acids and their derivatives -Addresses the growing market for nucleotide-derived pharmaceuticals used as anti-infectives and chemotherapeutic agents, as well as fungicides and other agrochemicals. -Covers novel methods and the most recent trends in the field -Contains contributions from an international panel of noted scientistics Written for biochemists, medicinal chemists, natural products chemists, organic chemists, and biotechnologists, Enzymatic and Chemical Synthesis of Nucleic Acid Derivatives is a practice-oriented guide that reviews innovative methods for the enzymatic as well as non-enzymatic synthesis of nucleic acid species.
The structure, function and reactions of nucleic acids are central to molecular biology and are crucial for the understanding of complex biological processes involved. Revised and updated Nucleic Acids in Chemistry and Biology 3rd Edition discusses in detail, both the chemistry and biology of nucleic acids and brings RNA into parity with DNA. Written by leading experts, with extensive teaching experience, this new edition provides some updated and expanded coverage of nucleic acid chemistry, reactions and interactions with proteins and drugs. A brief history of the discovery of nucleic acids is followed by a molecularly based introduction to the structure and biological roles of DNA and RNA. Key chapters are devoted to the chemical synthesis of nucleosides and nucleotides, oligonucleotides and their analogues and to analytical techniques applied to nucleic acids. The text is supported by an extensive list of references, making it a definitive reference source. This authoritative book presents topics in an integrated manner and readable style. It is ideal for graduate and undergraduates students of chemistry and biochemistry, as well as new researchers to the field.