Download Free Synthesis Chemical And Structural Characterization Of Molybdenum Hydrazido 2 Complexes With Tridentate Thiolate Ligands Book in PDF and EPUB Free Download. You can read online Synthesis Chemical And Structural Characterization Of Molybdenum Hydrazido 2 Complexes With Tridentate Thiolate Ligands and write the review.

Biological nitrogen fixation provides more than 50% of the total annual input of the essential element nitrogen to world agriculture. Thus, it is of immense agronomic importance and critical to food supplies, particularly in developing countries. This book, with chapters authored by internationally renowned experts, provides a comprehensive and detailed account of the fascinating history of the process - including the surprising discoveries of molybdenum-independent nitrogenases and superoxide-dependent nitrogenase; a review of Man's attempts to emulate the biological process - most successfully with the commercially dominant Haber-Bosch process; and the current state of the understanding art with respect to the enzymes - called nitrogenases - responsible for biological nitrogen fixation. The initial chapters use a historical approach to the biological and industrial processes, followed by an overview of assay methodologies. The next set of chapters focuses on the classical enzyme, the molybdenum nitrogenase, and details its biosynthesis, structure, composition, and mechanism of action as well as detailing both how variants of its two component proteins are constructed by recombinant DNA technology and how computational techniques are being applied. The sophisticated chemical modelling of the metal-containing clusters in the enzyme is reviewed next, followed by a description of the two molybdenum-independent nitrogenases - first, the vanadium-containing enzyme and then the iron-only nitrogenase - together with some thoughts as to why they exist! Then follows an up-to-date treatment of the clearly "non-classical" properties of the superoxide-dependent nitrogenase, which more closely resembles molybdenum-containing hydroxylases and related enzymes, like nitrate reductase, that it does the other nitrogenases. Each chapter contains an extensive list of references. This book is the self-contained first volume of a comprehensive seven-volume series. No other available work provides the up-to-date and in-depth coverage of this series and this volume. This book is intended to serve as an indispensable reference work for all scientists working in this area, including agriculture and the closely related metals-in-biology area; to assist students to enter this challenging area of research; and to provide science administrators easy access to vital relevant information.
This book leaves the conventional view of chemical structures far behind: it demonstrates how a wealth of valuable, but hitherto unused information can be extracted from available structural data. For example, a single structure determination does not reveal much about a reaction pathway, but a sufficiently large number of comparable structures does. Finding the 'right' question is as important as is the intelligent use of crystallographic databases. Contributions by F.H. Allen, T.L. Blundell, I.D. Brown, H.B. Bürgi, J.D. Dunitz, L. Leiserowitz and others, authoritatively discuss the structure correlation method as well as illustrative results in detail, covering such apparently unrelated subjects as * Bond strength relations in soldis * Crystal structure prediction * Reaction pathways of organic molecules * Ligand/receptor interactions and enzyme mechanisms This book will be useful to the academic and industrial reader alike. It offers both fundamental aspects and diverse applications of what will surely become a powerful branch of structural chemistry.
Direct Synthesis of Metal Complexes provides in-depth coverage of the direct synthesis of coordination and organometallic compounds. The work is primarily organized by methods, but also covers highly relevant complexes, such as metal-polymer coordination compounds. This updated reference discusses recent developments in cryosynthesis, electrosynthesis, and tribosynthesis (popular as it doesn't require organic solvents), with special attention paid to 'greener' methodologies and approaches. Additionally, the book describes physical methods of zero-valent metal interaction with organic matter, including sputtering, ultrasonic treatment and synthesis in ionic liquids. The book presents completely new content as a follow-up to the 1999 Elsevier Science publication Direct Synthesis of Coordination and Organometallic Compounds that was edited by Dr. Garnovskii and Dr. Kharisov. - Covers current methods and techniques of metal interactions with organic media leading to metal chelates, adducts, di- and polymetallic complexes, metal-containing macrocycles, supported coordination compounds (i.e., metal complexes on carbon nanotubes), and more - Describes reactivities of distinct forms of elemental metals (powders, sheets, nanoparticles (including a host of less-common metal nanostructures) with organic phase (liquid, solid and gaseous) and water - Includes experimental procedures, with examples of direct synthesis, at the end of each chapter
This book is a comprehensive guide to radiopharmaceutical chemistry. The stunning clinical successes of nuclear imaging and targeted radiotherapy have resulted in rapid growth in the field of radiopharmaceutical chemistry, an essential component of nuclear medicine and radiology. However, at this point, interest in the field outpaces the academic and educational infrastructure needed to train radiopharmaceutical chemists. For example, the vast majority of texts that address radiopharmaceutical chemistry do so only peripherally, focusing instead on nuclear chemistry (i.e. nuclear reactions in reactors), heavy element radiochemistry (i.e. the decomposition of radioactive waste), or solely on the clinical applications of radiopharmaceuticals (e.g. the use of PET tracers in oncology). This text fills that gap by focusing on the chemistry of radiopharmaceuticals, with key coverage of how that knowledge translates to the development of diagnostic and therapeutic radiopharmaceuticals for the clinic. The text is divided into three overarching sections: First Principles, Radiochemistry, and Special Topics. The first is a general overview covering fundamental and broad issues like “The Production of Radionuclides” and “Basics of Radiochemistry”. The second section is the main focus of the book. In this section, each chapter’s author will delve much deeper into the subject matter, covering both well established and state-of-the-art techniques in radiopharmaceutical chemistry. This section will be divided according to radionuclide and will include chapters on radiolabeling methods using all of the common nuclides employed in radiopharmaceuticals, including four chapters on the ubiquitously used fluorine-18 and a “Best of the Rest” chapter to cover emerging radionuclides. Finally, the third section of the book is dedicated to special topics with important information for radiochemists, including “Bioconjugation Methods,” “Click Chemistry in Radiochemistry”, and “Radiochemical Instrumentation.” This is an ideal educational guide for nuclear medicine physicians, radiologists, and radiopharmaceutical chemists, as well as residents and trainees in all of these areas.
Filling a gap in our systematic knowledge of gold, this monograph covers the fundamental aspects, while also considering new applications of gold compounds in catalysis, as nanoparticles, and their potential application as luminescent compounds. Written by an eminent team of authors from academia, the book analyzes the current status of gold chemistry, its special characteristics, oxidation states and main type of complexes, before going on to look at the synthesis of supramolecular aggregates due to the formation of gold-gold, gold-metal interactions or other secondary bonds. Final sections deal with LEDs, solvoluminescent and electroluminescent materials, liquid crystals and catalysis. While of interest to advanced chemistry students, this book is also useful for researchers interested in the chemistry of gold and its applications, as well as those involved in metal-metal interactions, heteronuclear chemistry or in the optical properties of coordination compounds.