Download Free Synthesis Characterization And Reactivity Of Ptii Water Soluble Bis Phosphine Complexes For The Hydration Of Functionalized Alkenes And Alkynes Book in PDF and EPUB Free Download. You can read online Synthesis Characterization And Reactivity Of Ptii Water Soluble Bis Phosphine Complexes For The Hydration Of Functionalized Alkenes And Alkynes and write the review.

Comprehensive Coordination Chemistry II (CCC II) is the sequel to what has become a classic in the field, Comprehensive Coordination Chemistry, published in 1987. CCC II builds on the first and surveys new developments authoritatively in over 200 newly comissioned chapters, with an emphasis on current trends in biology, materials science and other areas of contemporary scientific interest.
Surface organometallic chemistry is a new field bringing together researchers from organometallic, inorganic, and surface chemistry and catalysis. Topics ranging from reaction mechanisms to catalyst preparation are considered from a molecular basis, according to which the "active site" on a catalyst surface has a supra-molecular character. This. the first book on the subject, is the outcome of a NATO Workshop held in Le Rouret. France, in May. 1986. It is our hope that the following chapters and the concluding summary of recommendations for research may help to provide a definition of surface organometallic chemistry. Besides catalysis. the central theme of the Workshop, four main topics are considered: 1) Reactions of organometallics with surfaces of metal oxides, metals. and zeolites; 2) Molecular models of surfaces, metal oxides, and metals; 3) Molecular approaches to the mechanisms of surface reactions; 4) Synthesis and modification of zeolites and related microporous solids. Most surface organometallic chemistry has been carried out on amorphous high-surf ace-area metal oxides such as silica. alumina. magnesia, and titania. The first chapter. contributed by KNOZINGER. gives a short summary of the structure and reactivity of metal oxide surfaces. Most of our understanding of these surfaces is based on acid base and redox chemistry; this chemistry has developed from X-ray and spectroscopic data, and much has been inferred from the structures and reactivities of adsorbed organic probe molecules. There are major opportunities for extending this understanding by use of well-defined (single crystal) oxide surfaces and organometallic probe molecules.
The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. Review articles for the individual volumes are invited by the volume editors. Readership: research chemists at universities or in industry, graduate students.
Hydrocarbons and their transformations play major roles in chemistry as raw materials and sources of energy. Diminishing petroleum supplies, regulatory problems, and environmental concerns constantly challenge chemists to rethink and redesign the industrial applications of hydrocarbons. Written by Nobel Prize-winner George Olah and hydrocarbon expert Árpád Molnár, the completely revised and expanded Second Edition of Hydrocarbon Chemistry provides an unparalleled contemporary assessment of the field, presenting basic concepts, current research, and future applications. Hydrocarbon Chemistry begins by discussing the general aspects of hydrocarbons, the separation of hydrocarbons from natural sources, and the synthesis from C1 precursors with recent developments for possible future applications. Each successive chapter deals with a specific type of hydrocarbon transformation. The Second Edition includes a new section on the chemical reduction of carbon dioxide–focusing on catalytic, ionic, electrocatalytic, photocatalytic, and ezymatic reductions–as well as a new chapter on new catalysts and activation methods, combinatorial chemistry, and environmental chemistry. Other topics covered include: Major processes of the petrochemical industry, such as cracking, reforming, isomerization, and alkylation Derivation reactions to form carbon-heteroatom bonds Hydrocarbon oxidations Metathesis Oligomerization and polymerization of hydrocarbons All chapters have been updated by adding sections on recent developments to review new advances and results. Essential reading for practicing scientists in industry, polymer and catalytic chemists, as well as researchers and graduate students, Hydrocarbon Chemistry, Second Edition remains the benchmark text in its field.
An authoritative reference to an important and ubiquitous chemical linkage The amide linkage is one of the most fundamental and widespread chemical bonds in nature, underlying the properties of a vast array of organic molecules, polymers, and materials, including peptides and proteins. Arthur Greenberg, Curt Breneman, and Joel Liebman's peerless text provides comprehensive coverage of the experimental, structural, and computational findings that shed light on the chemical and physical properties of the amide linkage, as well as its emerging applications in materials and biotechnology. Chapters in The Amide Linkage highlight how this chemical bond factors in the design of enzyme inhibitors, cyclic peptides, antibacterial agents, and emerging nanotechnology applications. This one-of-a-kind study also: * Discusses selected aspects of chemical reactions, structure, bonding, and energetics of the amide bond, including amide rotational barriers, stereochemistry, complexation, spectroscopy, and thermochemistry * Presents specific applications to supramolecular and stereospecific synthesis * Discusses key aspects of peptide and protein chemistry-such as molecular recognition, conformation, and folding-in terms of the amide linkage * Includes chapters contributed by numerous eminent chemists and biochemists Organic, medicinal, polymer, and physical chemists, as well as biochemists and materials scientists, will find The Amide Linkage to be an invaluable addition to their professional libraries.
For the first time, the whole field of organoboronic acids is presented in one comprehensive handbook. Professor Dennis Hall, a rising star within the community, covers all aspects of this important substance class, including applications in chemistry, biology and medicine. Starting with an introduction to the structure, properties, and preparation of boronic acid derivatives, together with an overview of their reactions and applications, the book goes on to look at metal-catalyzed borylation of alkanes and arenas, coupling reactions and rhodium-catalyzed additions of boronic acids to alkenes and carbonyl compounds. There follows chapters on copper-promoted C-O and C-N cross-coupling of boronic acids, recent applications in organic synthesis, as well as alpha-haloalkylboronic esters in asymmetric synthesis. Later sections deal with cycloadditions, organoboronic acids, oxazaborolidines as asymmetric inducers, and boronic acid based receptors and sensors. The whole is rounded off with experimental procedures, making this invaluable reading for organic, catalytic and medicinal chemists, as well as those working in organometallics.
Catalytic Asymmetric Synthesis Seminal text presenting detailed accounts of the most important catalytic asymmetric reactions known today This book covers the preparation of enantiomerically pure or enriched chemical compounds by use of chiral catalyst molecules. While reviewing the most important catalytic methods for asymmetric organic synthesis, this book highlights the most important and recent developments in catalytic asymmetric synthesis. Edited by two well-qualified experts, sample topics covered in the work include: Metal catalysis, organocatalysis, photoredox catalysis, enzyme catalysis C–H bond functionalization reactions Carbon–carbon bond formation reactions, carbon–halogen bond formation reactions, hydrogenations, polymerizations, flow reactions Axially chiral compounds Retaining the best of its predecessors but now thoroughly up to date with the important and recent developments in catalytic asymmetric synthesis, the 4th edition of Catalytic Asymmetric Synthesis serves as an excellent desktop reference and text for researchers and students, from upper-level undergraduates all the way to experienced professionals in industry or academia.
Research on designing new catalytic systems has been one of the most important fields in modern organic chemistry. One reason for this is the predominant contribution of catalysis to the concepts of atom economy and green chemistry in the 21st century. Gold, considered catalytically inactive for a long time, is now a fascinating partner of modern chemistry, as scientists such as Bond, Teles, Haruta, Hutchings, Ito and Hayashi opened new perspectives for the whole synthetic chemist community. This book presents the major advances in homogeneous catalysis, emphasizing the methodologies that create carbon-carbon and carbon-heteroatom bonds, the applications that create diversity and synthesize natural products, and the recent advances and challenges in asymmetric catalysis and computational research.It provides readers with in-depth information about homogeneous gold-catalyzed reactions and presents several explanations for the scientific design of a catalyst. Readers will be able to understand the entire gold area and find solutions to problems in catalysis.Gold Catalysis — An Homogeneous Approach is part of the Catalytic Science Series and features prominent authors who are experts in their respective fields.