Download Free Synthesis Characterization And Hydrogenation Activity Of Group 10 Metal Complexes Featuring Bulky Phosphine Ligands Book in PDF and EPUB Free Download. You can read online Synthesis Characterization And Hydrogenation Activity Of Group 10 Metal Complexes Featuring Bulky Phosphine Ligands and write the review.

Bulky, electron-rich phosphine ligands facilitate unique reactivity in various chemical systems and can stabilize metal species in unusual oxidation states or environments. Routes to bulky bis(phosphine) chelating ligands that mimic the sterics of the exceptionally bulky tri-tert -buylphosphine are explored with the ultimate goal of preparing novel catalyst systems of group 10 metals capable of hydrogenation. Attempts to target bulky phosphines from phosphinimine precursors highlight some interesting phosphinimine reactivity, however attempts to reduce the phosphinimine bond revealed limitations. Bis(aminophosphine) ligands present an alternate route to bulky bis(phosphines) and allow for tunability of the environment around phosphorus. The coordination of these ligands with palladium and nickel exhibit a novel bonding mode in which C-H or N-H activation of the ligand occurs to form strained metallacycles. Prepared compounds showed some activity as catalysts under hydrogen and isomerized 1-hexene to 2-hexene, offering support for their potential use as hydrogenation catalysts.
With an enormous velocity, olefin polymerization has expanded to one of the most significant fields in polymers since the first industrial use about 50 years ago. In 2005, 100 million tons of polyolefins were produced - the biggest part was catalyzed by metallorganic compounds. The Hamburg Macromolecular Symposium 2005 with the title "Olefin Polymerization" involved topics such as new catalysts and cocatalysts, kinetics, mechanism and polymer reaction engineering, synthesis of special polymers, and characterization of polyolefins. The conference combined scientists from different disciplines to discuss latest research results of polymers and to offer each other the possibility of cooperation. This is reflected in this volume, which contains invited lectures and selected posters presented at the symposium.
In this comprehensive book, one of the leading experts, Shun-Ichi Murahashi, presents all the important facets of modern synthetic chemistry using Ruthenium, ranging from hydrogenation to metathesis. In 14 contributions, written by an international authorship, readers will find all the information they need about this fascinating and extraordinary chemistry. The result is a high quality information source and a indispensable reading for everyone working in organometallic chemistry. From the contents: Introduction (S.-I. Murahashi) Hydrogenation and Transfer Hydrogenation (M. Kitamura and R. Noyori) Oxidations (S.-I. Murahashi and N. Komiya) Carbon-Carbon Bond Formations via Ruthenacycle Intermediates (K. Itoh) Carbon-Carbon Bond Formation via pi-Allylruthenium Intermediates (T. Mitsudo) Olefin Metathesis (R. H. Grubbs) Cyclopropanation (H. Nishiyama) Nucleophilic Addition to Alkynes and Reactions via Vinylidene Intermediates (P. Dixneuf) Reactions via C-H Activation (N. Chatani) Lewis Acid Reactions (E. P. Kundig) Reactions with CO and CO2 (T. Mitsudo) Isomerization of Organic Substrates Catalyzed by Ruthenium Complexes (H. Suzuki) Radical Reactions (H. Nagashima) Bond Cleavage Reactions (S. Komiya)