Download Free Synthesis Characterization And Fabrication Of Boron Nitride And Carbon Nanomaterials Their Applications And The Extended Pressure Inductively Coupled Plasma Synthesis Of Boron Nitride Nanotubes Book in PDF and EPUB Free Download. You can read online Synthesis Characterization And Fabrication Of Boron Nitride And Carbon Nanomaterials Their Applications And The Extended Pressure Inductively Coupled Plasma Synthesis Of Boron Nitride Nanotubes and write the review.

Nanotechnology is a vital new area of research and development addressing the control, modification and fabrication of materials, structures and devices with nanometre precision and the synthesis of such structures into systems of micro- and macroscopic dimensions. Future applications of nanoscale science and technology include motors smaller than the diameter of a human hair and single-celled organisms programmed to fabricate materials with nanometer precision. Miniaturisation has revolutionised the semiconductor industry by making possible inexpensive integrated electronic circuits comprised of devices and wires with sub-micrometer dimensions. These integrated circuits are now ubiquitous, controlling everything from cars to toasters. The next level of miniaturisation, beyond sub-micrometer dimensions into nanoscale dimensions (invisible to the unaided human eye) is a booming area of research and development. This is a very hot area of research with large amounts of venture capital and government funding being invested worldwide, as such Nanoscale Science and Technology has a broad appeal based upon an interdisciplinary approach, covering aspects of physics, chemistry, biology, materials science and electronic engineering. Kelsall et al present a coherent approach to nanoscale sciences, which will be invaluable to graduate level students and researchers and practising engineers and product designers.
Boron Nitride Nanotubes in Nanomedicine compiles, for the first time in a single volume, all the information needed by researchers interested in this promising type of smart nanoparticles and their applications in biomedicine. Boron nitride nanotubes (BNNTs) represent an innovative and extremely intriguing class of nanomaterials. After introducing BNNTs and explaining their preparation and evaluation, the book shows how the physical, chemical, piezoelectric and biocompatibility properties of these nanotubes give rise to their potential uses in biomedicine. Evidence is offered (from both in vitro and in vivo investigations) for how BNNTs can be useful in biomedical and nanomedicine applications such as therapeutic applications, tissue regeneration, nanovectors for drug delivery, and intracellular nanotransducers. - Covers a range of promising biomedical BNNT applications - Provides great value not just to academics but also industry researchers in fields such as materials science, molecular biology, pharmacology, biomedical engineering, and biophysical sciences - Offers evidence for how BNNTs can be useful in biomedical and nanomedicine applications such as therapy, tissue regeneration, nanovectors for drug delivery, and intracellular nanotransducers - Incorporates, for the first time in a single volume, all the information needed by researchers interested in this promising type of smart nanoparticles and their applications in biomedicine
Representing the first text to cover this exciting new area of research, this book will describe synthesis techniques of CNWs, their characterization and various expected applications using CNWs. Carbon-nanowalls (CNWs) can be described as two-dimensional graphite nanostructures with edges comprised of stacks of plane graphene sheets standing almost vertically on the substrate. These sheets form a wall structure with a high aspect ratio. The thickness of CNWs ranges from a few nm to a few tens of nm. The large surface area and sharp edges of CNWs may prove useful for a number of applications such as electrochemical devices, field electron emitters, storage materials for hydrogen gas, catalyst support. In particular, vertically standing CNWs with a high surface-to-volume ratio, serve as an ideal material for catalyst support for fuel cells and in gas storage materials.
The most comprehensive reference on fluorescent nanodiamond physical and chemical properties and contemporary applications Fluorescent nanodiamonds (FNDs) have drawn a great deal of attention over the past several years, and their applications and development potential are proving to be manifold and vast. The first and only book of its kind, Fluorescent Nanodiamonds is a comprehensive guide to the basic science and technical information needed to fully understand the fundamentals of FNDs and their potential applications across an array of domains. In demonstrating the importance of FNDs in biological applications, the authors bring together all relevant chemistry, physics, materials science and biology. Nanodiamonds are produced by powerful cataclysmic events such as explosions, volcanic eruptions and meteorite impacts. They also can be created in the lab by high-pressure high-temperature treatment of graphite or detonating an explosive in a reactor vessel. A single imperfection can give a nanodiamond a specific, isolated color center which allows it to function as a single, trapped atom. Much smaller than the thickness of a human hair, a nanodiamond can have a huge surface area that allows it to bond with a variety of other materials. Because of their non-toxicity, nanodiamonds may be useful in biomedical applications, such as drug delivery and gene therapy. The most comprehensive reference on a topic of rapidly increasing interest among academic and industrial researchers across an array of fields Includes numerous case studies and practical examples from many areas of research and industrial applications, as well as fascinating and instructive historical perspectives Each chapter addresses, in-depth, a single integral topic including the fundamental properties, synthesis, mechanisms and functionalisation of FNDs The first book published by the key patent holder with his research group in the field of FNDs Fluorescent Nanodiamonds is an important working resource for a broad range of scientists and engineers in industry and academia. It will also be a welcome reference for instructors in chemistry, physics, materials science, biology and related fields.
Nanotube Superfiber Materials refers to different forms of macroscale materials with unique properties constructed from carbon nanotubes. These materials include nanotube arrays, ribbons, scrolls, yarn, braid, and sheets. Nanotube materials are in the early stage of development and this is the first dedicated book on the subject. Transitioning from molecules to materials is a breakthrough that will positively impact almost all industries and areas of society. Key properties of superfiber materials are high flexibility and fatigue resistance, high energy absorption, high strength, good electrical conductivity, high maximum current density, reduced skin and proximity effects, high thermal conductivity, lightweight, good field emission, piezoresistive, magnetoresistive, thermoelectric, and other properties. These properties will open up the door to dozens of applications including replacing copper wire for power conduction, EMI shielding, coax cable, carbon biofiber, bullet-proof vests, impact resistant glass, wearable antennas, biomedical microdevices, biosensors, self-sensing composites, supercapacitors, superinductors, hybrid superconductor, reinforced elastomers, nerve scaffolding, energy storage, and many others. The scope of the book covers three main areas: Part I: Processing; Part II: Properties; and Part III: Applications. Processing involves nanotube synthesis and macro scale material formation methods. Properties covers the mechanical, electrical, chemical and other properties of nanotubes and macroscale materials. Different approaches to growing high quality long nanotubes and spinning the nanotubes into yarn are explained in detail. The best ideas are collected from all around the world including commercial approaches. Applications of nanotube superfiber cover a huge field and provides a broad survey of uses. The book gives a broad overview starting from bioelectronics to carbon industrial machines. - First book to explore the production and applications of macro-scale materials made from nano-scale particles - Sets out the processes for producing macro-scale materials from carbon nanotubes, and describes the unique properties of these materials - Potential applications for CNT fiber/yarn include replacing copper wire for power conduction, EMI shielding, coax cable, carbon biofiber, bullet-proof vests, impact resistant glass, wearable antennas, biomedical microdevices, biosensors, self-sensing composites, supercapacitors, superinductors, hybrid superconductor, reinforced elastomers, nerve scaffolding, energy storage, and many others
From a chemistry aspect, graphene is the extrapolated extreme of condensed polycyclic hydrocarbon molecules to infinite size. Here, the concept on aromaticity which organic chemists utilize is applicable. Interesting issues appearing between physics and chemistry are pronounced in nano-sized graphene (nanographene), as we recognize the importance of the shape of nanographene in understanding its electronic structure. In this book, the fundamental issues on the electronic, magnetic, and chemical properties of condensed polycyclic hyodrocarbon molecules, nanographene and graphene are comprehensively discussed.
This book addresses the control of electronic properties of carbon nanotubes. It presents thermodynamic calculations of the formation of impurities and defects in the interaction of nanotubes with hydrogen, oxygen, nitrogen and boron, based on theoretical models of the formation of defects in carbon nanotubes. It is shown that doping and adsorption lead to changes in the electronic structure of the tubes as well as to the appearance of impurity states in the HOMO-LUMO gap. The book presents examples of specific calculations for doping of carbon nanotubes with oxygen, hydrogen, nitrogen and boron, together with numerous experimental results and a comparison with the author’s thermodynamic calculations. Possible directions of the technological processes of optimization are pointed out, as well as the perspectives of p-n-transition creation with the help of carbon nanotube arrays. The results presented were derived from the physics of the processes and a theoretical model of the technological processes. Though a wealth of empirical information on doping nanotubes has been accumulated in the scientific literature, what is lacking is a theoretical model for their analysis. As such, the book develops a thermodynamic model of the self-organization of structural elements in multicomponent systems – including carbon nanotubes, clusters and precipitates in condensed matter – and subsequently adapts it to the doping of carbon nanotubes. This approach allows readers to gain a far deeper understanding of the processes of doping carbon nanotubes.
Carbon nanotubes (CNTs) and Boron nitride nanotubes (BNNTs) are part of the so-called B-C-N material system, which includes novel nanostructures of carbon (C), doped-carbon, boron (B), boron nitride (BN), carbon nitride (CNx), boron-carbon nitride (BxCyNz), and boron carbide (BxCy). BNNTs and CNTs are structurally similar and share extraordinary mechanical properties, but they differ in chemical, biological, optical, and electrical properties. Therefore, hybrid nanotubes constructed of B, C, N elements are expected to form a new class of nanotubes with tunable properties between those of CNTs and BNNTs. In addition, these B-C-N nanostructures will further enhance and complement the applications of CNTs and BNNTs. With contributions from leading experts, B-C-N Nanotubes and Related Nanostructures is the first book to cover all theoretical and experimental aspects of this emerging material system, and meets the need for a comprehensive summary of the tremendous advances in research on B-C-N materials in recent years.
This book presents synthesis techniques for the preparation of low-dimensional nanomaterials including 0D (quantum dots), 1D (nanowires, nanotubes) and 2D (thin films, few layers), as well as their potential applications in nanoelectronic systems. It focuses on the size effects involved in the transition from bulk materials to nanomaterials; the electronic properties of nanoscale devices; and different classes of nanomaterials from microelectronics to nanoelectronics, to molecular electronics. Furthermore, it demonstrates the structural stability, physical, chemical, magnetic, optical, electrical, thermal, electronic and mechanical properties of the nanomaterials. Subsequent chapters address their characterization, fabrication techniques from lab-scale to mass production, and functionality. In turn, the book considers the environmental impact of nanotechnology and novel applications in the mechanical industries, energy harvesting, clean energy, manufacturing materials, electronics, transistors, health and medical therapy. In closing, it addresses the combination of biological systems with nanoelectronics and highlights examples of nanoelectronic–cell interfaces and other advanced medical applications. The book answers the following questions: • What is different at the nanoscale? • What is new about nanoscience? • What are nanomaterials (NMs)? • What are the fundamental issues in nanomaterials? • Where are nanomaterials found? • What nanomaterials exist in nature? • What is the importance of NMs in our lives? • Why so much interest in nanomaterials? • What is at nanoscale in nanomaterials? • What is graphene? • Are pure low-dimensional systems interesting and worth pursuing? • Are nanotechnology products currently available? • What are sensors? • How can Artificial Intelligence (AI) and nanotechnology work together? • What are the recent advances in nanoelectronic materials? • What are the latest applications of NMs?
This Handbook covers all aspects related to Nanofibers, from the experimental set-up for their fabrication to their potential industrial applications. It describes several kinds of nanostructured fibers such as metal oxides, natural polymers, synthetic polymers and hybrid inorganic-polymers or carbon-based materials. The first part of the Handbook covers the fundamental aspects, experimental setup, synthesis, properties and physico-chemical characterization of nanofibers. Specifically, this part details the history of nanofibers, different techniques to design nanofibers, self-assembly in nanofibers, critical parameters of synthesis, fiber alignment, modeling and simulation, types and classifications of nanofibers, and signature physical and chemical properties (i.e. mechanical, electrical, optical and magnetic), toxicity and regulations, bulk and surface functionalization and other treatments to allow them to a practical use. Characterization methods are also deeply discussed here. The second part of the Handbook deals with global markets and technologies and emerging applications of nanofibers, such as in energy production and storage, aerospace, automotive, sensors, smart textile design, energy conversion, tissue engineering, medical implants, pharmacy and cosmetics. Attention is given to the future of research in these areas in order to improve and spread the applications of nanofibers and their commercialization.