Download Free Synthesis And Structural Characterization Of M Terphenyl Schiff Base Ligands And Their Aluminum Complexes Book in PDF and EPUB Free Download. You can read online Synthesis And Structural Characterization Of M Terphenyl Schiff Base Ligands And Their Aluminum Complexes and write the review.

Over recent years a great deal of interest has developed in new transition metal complexes of Schiff base ligand. The preparation of new ligand is the most important step in the development of metal complexes that exhibit unique properties and novel reactivity. The electron donor and electron acceptor properties of the ligand, the structural function groups and the position of the ligand in the coordination sphere, together with the reactivity of coordination compounds may be the factor for different studies. The synthesis and structural investigations of Schiff bases and their metal complexes are a considerable center of attention because of their potentially beneficial pharmacological properties and a wide variation in their mode of bonding. Metal coordination complexes have a wide variety of technological and industrial application, ranging from catalysis to anticancer drugs. In these compounds the metal atom itself may have a number of roles, based on its coordination geometry, oxidation state, and magnetic electronic and photochemical behaviors. This study presents the synthesis, characterization, and structural studies of different series of Copper and Uranium complexes of salicylaldehyde Schiff base derivatives with various organic amine compounds. The Schiff bases act as neutral and bidentate ligands, which can attach the metal through the azomethine nitrogen and furfural oxygens. These Schiff bases are prepared by iii reacting salicylaldehyde with various organic amines. In the case of most complexation reactions, highly colored precipitates were formed immediately. The complexes were found to have composition ML2 and M2L2, where M is the metal and L the organic ligand. This implies "mononuclear" structures with one metal + 2 ligands, and "binuclear" where the ligands hold two metal atoms in close proximity. The interesting molecular and crystal structural features of the Schiff base ligand called E-2-((benzo[d]thiazol-2-ylimino)methyl)phenol and its Cu(II) complex are presented in Chapter 2. Further investigations on the coordination chemistry of the Schiff base ligands are made by reacting these ligands with copper and uranium, described in Chapter 3. Another series of dicopper(II) complexes and diuranium complex of the Schiff base ligands, containing azomethine nitrogen and furfural oxygen donor group are investigated to evaluate the role of alkoxo bridge on the structures. Making the compounds with two uranium atoms leads to very high molecular weight, as a path to the highest molecular weight liquid crystal. This lays the pathway to future work for making those crystals. These dinuclear complexes are presented in chapter 4. The objective of the present study is to investigate the coordination chemistry of these ligands with Copper and Uranium. For the ligands this was done by a combination of nuclear magnetic resonance spectroscopy, infrared spectroscopy, ultraviolet-visible spectroscopy and single X-ray crystallography. The metal complexes were analyzed by the same techniques, except that in the case of uranium, all efforts to obtain single crystal for X-ray crystallography proved unsuccessful, so the molecular structure had to be ascertained from the other techniques.
Coordination compounds have been well-known for their wide variety of applications for over a century, as well as enhancing the researcher's interest and concern in evaluating their action mechanism. It is certainly one of the most intensely discussed research topics. Coordination compounds involve different metal-ion-ligand phenomenon. The involved metal ions play a significant role in structural association and functioning of several processes in the genetic and metabolism system. In recent years, Schiff base ligands have gained significant interest and received a keen interest of many researchers. Schiff's base ligands have been recognized to hold a wide variety of biological and medicinal activities due to the presence of donor atoms. They have proved exceptional pharmalogical actions such as antimicrobial, anti-tuberclosis, antiplatelet, antidiabetic, antiarthritis, antioxidant, anti-inflammatory, anticancer, antiviral, antimalarial, and analgesic. These biologically active Schiff base ligands have also been shown to inhibit enzyme mobilization and, when bound to a metal ion, exhibit enhanced biological activity, making them useful in a number of fields. As a result, metal complexes of Schiff base ligands are gaining popularity due to their unique properties and functionalities. Schiff base complex-based research for educational and industrial purposes is booming, and the number of publications is gradually increasing. Despite these interests, there is currently no detailed book on Schiff base metal complexes that covers the structures, biological activities, and other non-biological perspectives. This book delves into the structures of Schiff base metal complexes, which are critical in assessing the biological viability of any complex. It also highlights their biological significance in pharma and drug discovery like antibacterial, antifungal, anticancer, anti-inflammatory, anti-arthritis, anti-diabetic, antioxidants, anti-proliferative, antitumor, anticancer, antiviral. The fundamentals of metal complexes are described, as well as an up-to-date outline of developments in synthesis, characterization methods, properties- chemical, thermal, optical, structural, and applications. This book also discusses the other applications of Schiff base metal complexes: as sensor (luminescent, electrochemical, and biosensor), as pigments in dying and paint industries, as photocatalyst to improve the degradation rate. Features: This book would be useful for academia, researchers and engineers working in the area of Schiff base and their metal complexes. This book will give an in-depth account of the properties of Schiff base and their metal complexes. This book will discuss the details of synthesis methods for Schiff base and their metal complexes. This book will cover emerging trends in the use of Schiff base metal complexes in the industry. This book will provide an overview of the wider biological applications of Schiff base metal complexes
Nitrogen based monodentate and bidentate chelating ligands have captured a significant interest due to their ability to coordinate to a wide variety of elements. The â-diketimine, â-ketoiminato, formamidine, pyridineselenolate, and pyrazinecarboxamide ligands have all been employed in this study to further investigate the coordination preferences among main group and transition metals. Steric and electronic properties of these ligands can easily be altered by manipulating the substituents attached, thus leading to predictable structures with potential for many useful and significant applications. Investigations have shown that temperature, solvent, and metal halide employed are all key factors in the reaction outcomes. All of the complexes obtained throughout these studies have been characterized by X-ray crystallography along with other spectroscopic techniques, including NMR, IR, UV/Vis, and M/S. â-diketiminato ligands, [{N(R)C(Me)}2C(H)] where R = Dipp, Mes, commonly referred to as nacnac, have played an important role in the synthesis of novel pnictogenium complexes. Results show that through manipulation of the halide precursor, reaction stoichiometry, and the R substituent on the nacnac both N, N'- and N, C'-metal chelated complexes can be achieved. Additionally, â-ketiminato ligands, [RN(H)(C(Me))2C(Me)=O] where R = Dipp, and [RN(H)C(Me)CHC(Me)=O] where R = C2H4NEt2, have been studied. Both ligands were investigated with a range of d and p block metal halides and alkyls in order to compare and contrast the bulky, flexible, and even multi-dentate nature of each ligand. The preferred metal geometry remains constant for products with either ligand, but the steric protection offered by the individual ligands governs the nuclearity of the products, ranging from tetrameric cages to simple adducts. The formamidinate ligand, [RN(H)C(H)NR] where R = Dipp, was employed in synthesizing several aluminum and zinc complexes. In addition to their numerous applications as cata.
Describes the synthesis and structure of mononuclear M(III) complexes and what factors control the stereochemistry.