Download Free Synthesis And Reactivity Of Rhodium And Iridium Silyl And Silylene Complexes Supported By Pnp Pincer Ligands Book in PDF and EPUB Free Download. You can read online Synthesis And Reactivity Of Rhodium And Iridium Silyl And Silylene Complexes Supported By Pnp Pincer Ligands and write the review.

Pincer-Metal Complexes: Applications in Catalytic Dehydrogenation Chemistry provides an overview of pincer-metal catalytic systems that transform hydrocarbons and their derivatives from an synthetic and mechanistic point-of-view. This book provides thorough coverage of the operating mechanisms and dehydrogenation catalyst compatibility in both functionalized and unfunctionalized hydrocarbon systems. In addition, it includes success stories of pincer-metal systems, as well as current and future challenges. The book is an ideal reference for researchers practicing synthetic organic chemistry, inorganic chemistry, organometallic chemistry and catalysis in academia and industry. In recent years there has been a surge in the research on hydrocarbon dehydrogenation catalytic systems that are compatible with polar substituents. This helps facilitate formulation of tandem processes that are not limited to hydrocarbon transformation but also to hydrocarbon functionalization in a single pot. - Covers applications of pincer-metal complexes in organic transformations - Includes pincer-group 8 and 9 metal complexes for alkane dehydrogenations - Features a discussion of pincer-metal complexes for the dehydrogenation of functionalized hydrocarbons and electro-catalytic transformations
With an enormous velocity, olefin polymerization has expanded to one of the most significant fields in polymers since the first industrial use about 50 years ago. In 2005, 100 million tons of polyolefins were produced - the biggest part was catalyzed by metallorganic compounds. The Hamburg Macromolecular Symposium 2005 with the title "Olefin Polymerization" involved topics such as new catalysts and cocatalysts, kinetics, mechanism and polymer reaction engineering, synthesis of special polymers, and characterization of polyolefins. The conference combined scientists from different disciplines to discuss latest research results of polymers and to offer each other the possibility of cooperation. This is reflected in this volume, which contains invited lectures and selected posters presented at the symposium.
Pincer complexes are formed by the binding of a chemical structure to a metal atom with at least one carbon-metal bond. Usually the metal atom has three bonds to a chemical backbone, enclosing the atom like a pincer. The resulting structure protects the metal atom and gives it unique properties.The last decade has witnessed the continuous growth in the development of pincer complexes. These species have passed from being curiosity compounds to chemical chameleons able to perform a wide variety of applications. Their unique metal bound structures provide some of the most active catalysts yet known for organic transformations involving the activation of bonds. The Chemistry of Pincer Compounds details use of pincer compounds including homogeneous catalysis, enantioselective organic transformations, the activation of strong bonds, the biological importance of pincer compounds as potential therapeutic or pharmaceutical agents, dendrimeric and supported materials.* Describes the chemistry and applications of this important class of organometallic and coordination compounds* Covers the areas in which pincer complexes have had an impact* Includes information on more recent and interesting pincer compounds not just those that are well-known
Provides a unique summary of important catalytic reactions in the presence of silicon A must-have for all synthetic chemists, this book summarizes all of the important developments in the application of organosilicon compounds in organic synthesis and catalysis. Edited by two world leaders in the field, it describes different approaches and covers a broad range of reactions, e.g. catalytic generation of silicon nucleophiles, Si-H Bond activation, C-H bond silylation, silicon-based cross-coupling reactions, and hydrosilylation in the presence of earth-abundant metals. In addition to the topics covered above, Organosilicon Chemistry: Novel Approaches and Reactions features chapters that look at Lewis base activation of silicon Lewis acids, silylenes as ligands in catalysis, and chiral silicon molecules. -The first book about this topic in decades, covering a broad range of reactions -Covers new approaches and novel catalyst systems that have been developed in recent years -Written by well-known, international experts in the areas of organometallic silicon chemistry and organosilicon cross-coupling reactions Organosilicon Chemistry: Novel Approaches and Reactions is an indispensable source of information for synthetic chemists in academia and industry, working in the field of organic synthesis, catalysis, and main-group chemistry.
This book provides a review of cyclometalation reactions and organometallic intramolecular-coordination five-membered ring products, the most active type of reactions in synthetic organic reactions and their products. Included is the discovery of intramolecular-coordination bonds in cyclometalation reactions and the characteristics of those reactions, as well as the reasons that their five-membered ring compounds are very easily synthesized through such reactions. In addition, the applications of cyclometalation reactions and five-membered ring products, synthetic applications, catalysts, and other products are described. These topics are of special interest for industrial researchers.
At the very latest, with the award of the 2001 Nobel Prize for work on asymmetric oxidation, there has been a need for a comprehensive book on such methods. Edited by J.-E. Backvall, one of the world's leaders in the field, this book fills that gap by covering the topic, from classical to green chemistry methods. He has put together a plethora of well-established authors from all over the world who cover every important aspect in high-quality contributions -- whether aerobic oxidation or transition metal-catalyzed epoxidation of alkenes. By providing an overview of this huge topic, this book represents an unparalleled aid for any chemist working in the field. Chapters include: Recent Developments in the Osmium-Catalyzed Dihydroxylation of Olefins Transition Metal-Catalyzed Epoxidation of Alkenes Organocatalytic Oxidation - Ketone-Catalyzed Asymmetric Epoxidation of Olefins Modern Oxidation of Alcohols using environmentally Benign Oxidants Aerobic Oxidations and Related Reactions Catalyzed by N-Hydroxyphthalimide Ruthenium-Catalyzed Oxidation of Alkenes, Alcohols, Amines, Amides, b-Lactams, Phenols, and Hydrocarbons Selective Oxidations of Sulfides and Amines Liquid Phase Oxidation Reactions Catalyzed by Polyoxometalates Oxidation of Carbonyl Compounds Mn-catalysed Oxidation with Hydrogen Peroxide
Juan I. Padrón and Víctor S. Martín: Catalysis by means of Fe-based Lewis acids; Hiroshi Nakazawa*, Masumi Itazaki: Fe–H Complexes in Catalysis; Kristin Schröder, Kathrin Junge, Bianca Bitterlich, and Matthias Beller: Fe-catalyzed Oxidation Reactions of Olefins, Alkanes and Alcohols: Involvement of Oxo- and Peroxo Complexes; Chi-Ming Che, Cong-Ying Zhou, Ella Lai-Ming Wong: Catalysis by Fe=X Complexes (X=NR, CR2); René Peters, Daniel F. Fischer and Sascha Jautze: Ferrocene and Half Sandwich Complexes as Catalysts with Iron Participation; Markus Jegelka, Bernd Plietker: Catalysis by Means of Complex Ferrates.
The series Topics in Organometallic Chemistry presents critical overviews of research results in organometallic chemistry. As our understanding of organometallic structure, properties and mechanisms increases, new ways are opened for the design of organometallic compounds and reactions tailored to the needs of such diverse areas as organic synthesis, medical research, biology and materials science. Thus the scope of coverage includes a broad range of topics in pure and applied organometallic chemistry, where new breakthroughs are being achieved that are of significance to a larger scientific audience. The individual volumes of Topics in Organometallic Chemistry are thematic. Review articles are generally invited by the volume editors.