Download Free Synthesis And Characterization Of Ordered Cage Like Siliceous Mesostructures With Organic Pendant And Bridging Groups Book in PDF and EPUB Free Download. You can read online Synthesis And Characterization Of Ordered Cage Like Siliceous Mesostructures With Organic Pendant And Bridging Groups and write the review.

This book follows up an Advanced Research Workshop dedicated to the subject of adsorption. It presents an up-to-date review of the latest achievements in the synthesis, characterization and applications of hybrid organic-inorganic materials and of carbon and combined adsorbents. The modeling of the adsorption process, including the simulation of carbon masks used for both civil and military protection purposes is also addressed. Includes applications in environmental, military and post-disaster situations.
This book provides a comprehensive overview of the fundamental properties, preparation routes and applications of a novel class of organic–inorganic nanocomposites known as periodic mesoporous organosilicas (PMOs). Mesoporous silicas are amorphous inorganic materials which have silicon and oxygen atoms in their framework with pore size ranging from 2 to 50 nm. They can be synthesized from surfactants as templates for the polycondensation of various silicon sources such as tetraalkoxysilane. In general, mesoporous silica materials possess high surface areas, tunable pore diameters, high pore volumes and well uniformly organized porosity. The stable chemical property and the variable ability for chemical modification makes them ideal for many applications such as drug carrier, sensor, separation, catalyst, and adsorbent. Among such mesoporous silicas, in 1999, three groups in Canada, Germany, and Japan independently developed a novel class of organic–inorganic nanocomposites known as periodic mesoporous organosilicas (PMOs). The organic functional groups in the frameworks of these solids allow tuning of their surface properties and modification of the bulk properties of the material. The book discusses the properties of PMOs, their preparation, different functionalities and morphology, before going on to applications in fields such as catalysis, drug delivery, sensing, optics, electronic devices, environmental applications (gas sensing and gas adsorption), biomolecule adsorption and chromatography. The book provides fundamental understanding of PMOs and their advanced applications for general materials chemists and is an excellent guide to these promising novel materials for graduate students majoring in chemical engineering, chemistry, polymer science and materials science and engineering.
With the recent advent of nanotechnology, research and development in the area of nanostructured materials has gained unprecedented prominence. Novel materials with potentially exciting new applications are being discovered at a much higher rate than ever before. Innovative tools to fabricate, manipulate, characterize and evaluate such materials are being developed and expanded. To keep pace with this extremely rapid growth, it is necessary to take a breath from time to time, to critically assess the current knowledge and provide thoughts for future developments. This book represents one of these moments, as a number of prominent scientists in nanostructured materials join forces to provide insightful reviews of their areas of expertise, thus offering an overall picture of the state-- the art of the field. Nanostructured materials designate an increasing number of materials with designed shapes, surfaces, structures, pore systems, etc. Nanostructured materials with modified surfaces include those whose surfaces have been altered via such techniques as grafting and tethering of organic or organometallic species, or through various deposition procedures including electro, electroless and vapor deposition, or simple adsorption. These materials find important applications in catalysis, separation and environmental remediation. Materials with patterned surfaces, which are essential for the optoelectronics industry, constitute another important class of surface-modified nanostructured materials. Other materials are considered nanostructured because of their composition and internal organization.
Surface organometallic chemistry is a new field bringing together researchers from organometallic, inorganic, and surface chemistry and catalysis. Topics ranging from reaction mechanisms to catalyst preparation are considered from a molecular basis, according to which the "active site" on a catalyst surface has a supra-molecular character. This. the first book on the subject, is the outcome of a NATO Workshop held in Le Rouret. France, in May. 1986. It is our hope that the following chapters and the concluding summary of recommendations for research may help to provide a definition of surface organometallic chemistry. Besides catalysis. the central theme of the Workshop, four main topics are considered: 1) Reactions of organometallics with surfaces of metal oxides, metals. and zeolites; 2) Molecular models of surfaces, metal oxides, and metals; 3) Molecular approaches to the mechanisms of surface reactions; 4) Synthesis and modification of zeolites and related microporous solids. Most surface organometallic chemistry has been carried out on amorphous high-surf ace-area metal oxides such as silica. alumina. magnesia, and titania. The first chapter. contributed by KNOZINGER. gives a short summary of the structure and reactivity of metal oxide surfaces. Most of our understanding of these surfaces is based on acid base and redox chemistry; this chemistry has developed from X-ray and spectroscopic data, and much has been inferred from the structures and reactivities of adsorbed organic probe molecules. There are major opportunities for extending this understanding by use of well-defined (single crystal) oxide surfaces and organometallic probe molecules.
Mesoporous materials are a class of molecules with a large and uniform pore size, highly regular nanopores, and a large surface area. This book is devoted to all aspects and types of these materials and describes, in an in-depth and systematic manner, the step-by-step synthesis and its mechanism, as well as the characterization, morphology control, hybridization, and applications, of mesoporous molecular sieves. In so doing, it covers silicates, metal-doped silicates, nonsilicates, and organic-inorganic hybrids. Although the emphasis is on synthesis, the expert authors also discuss characterization and applications, ranging from catalysis and biochemistry to optics and the use of these materials as templates for nanomaterial synthesis. Both the fundamentals and the latest research results are covered, ensuring that this monograph serves as a reference for researchers in and newcomers to the field.
This book presents the most important advances in the class of topological materials and discusses the topological characterization, modeling and metrology of materials. Further, it addresses currently emerging characterization techniques such as optical and acoustic, vibrational spectroscopy (Brillouin, infrared, Raman), electronic, magnetic, fluorescence correlation imaging, laser lithography, small angle X-ray and neutron scattering and other techniques, including site-selective nanoprobes. The book analyzes the topological aspects to identify and quantify these effects in terms of topology metrics. The topological materials are ubiquitous and range from (i) de novo nanoscale allotropes of carbons in various forms such as nanotubes, nanorings, nanohorns, nanowalls, peapods, graphene, etc. to (ii) metallo-organic frameworks, (iii) helical gold nanotubes, (iv) Möbius conjugated polymers, (v) block co-polymers, (vi) supramolecular assemblies, to (vii) a variety of biological and soft-matter systems, e.g. foams and cellular materials, vesicles of different shapes and genera, biomimetic membranes, and filaments, (viii) topological insulators and topological superconductors, (ix) a variety of Dirac materials including Dirac and Weyl semimetals, as well as (x) knots and network structures. Topological databases and algorithms to model such materials have been also established in this book. In order to understand and properly characterize these important emergent materials, it is necessary to go far beyond the traditional paradigm of microscopic structure-property-function relationships to a paradigm that explicitly incorporates topological aspects from the outset to characterize and/or predict the physical properties and currently untapped functionalities of these advanced materials. Simulation and modeling tools including quantum chemistry, molecular dynamics, 3D visualization and tomography are also indispensable. These concepts have found applications in condensed matter physics, materials science and engineering, physical chemistry and biophysics, and the various topics covered in the book have potential applications in connection with novel synthesis techniques, sensing and catalysis. As such, the book offers a unique resource for graduate students and researchers alike.
Thin Film Metal-Oxides provides a representative account of the fundamental structure-property relations in oxide thin films. Functional properties of thin film oxides are discussed in the context of applications in emerging electronics and renewable energy technologies. Readers will find a detailed description of deposition and characterization of metal oxide thin films, theoretical treatment of select properties and their functional performance in solid state devices, from leading researchers. Scientists and engineers involved with oxide semiconductors, electronic materials and alternative energy will find Thin Film Metal-Oxides a useful reference.
Since it is one of the core disciplines, every student of organic chemistry will need to cover organic synthesis at some point. This third edition of an extremely well-received and proven textbook is specially written with advanced undergraduate and graduate students in mind, although it is equally useful for research chemists, too. 50% of the text is new and includes new chapters on combinatoric chemistry, non-covalent molecular assemblies and the use of the Internet for searching chemical compounds. The authors have chosen the methods included here for their efficiency, elegance, and didactic value and have highlighted important reactions within the text. From reviews of the second edition: 'The text is very readable, and the authors are especially gifted at explaining complex concepts clearly and succinctly...This book is highly recommended reading for anyone wishing to gain an overview of organic synthesis.' J. Am. Chem. Soc. With his preface, Noble prizewinner E. J. Corey has also endorsed this already highly acclaimed work.
This book presents emerging economical and environmentally friendly polymer composites that are free of the side effects observed in traditional composites. It focuses on eco-friendly composite materials using granulated cork, a by-product of the cork industry; cellulose pulp from the recycling of paper residues; hemp fibers; and a range of other environmentally friendly materials procured from various sources. The book presents the manufacturing methods, properties and characterization techniques of these eco-friendly composites. The respective chapters address classical and recent aspects of eco-friendly polymer composites and their chemistry, along with practical applications in the biomedical, pharmaceutical, automotive and other sectors. Topics addressed include the fundamentals, processing, properties, practicality, drawbacks and advantages of eco-friendly polymer composites. Featuring contributions by experts in the field with a variety of backgrounds and specialties, the book will appeal to researchers and students in the fields of materials science and environmental science. Moreover, it fills the gap between research work in the laboratory and practical applications in related industries.