Download Free Synthesis And Characterization Of Copper Based Ternary Metal Chalcogenides Book in PDF and EPUB Free Download. You can read online Synthesis And Characterization Of Copper Based Ternary Metal Chalcogenides and write the review.

The field of nanoscience continues to grow and, with such a vast landscape of material, careful distillation of the most important discoveries will help researchers find the key information they require. Nanoscience provides a critical and comprehensive assessment of the most recent research and opinion from across the globe. Topics covered in this volume include metal halide perovskite nanomaterials, properties and applications, nanoparticles and nanocomposites for new permanent magnets and graphene-based materials for energy conversion applications. Anyone practising in any nano-allied field, or wishing to enter the nano-world will benefit from this resource, presenting the current thought and applications of nanoscience.
Chalcogenide-Based Nanomaterials as Photocatalysts deals with the different types of chalcogenide-based photocatalytic reactions, covering the fundamental concepts of photocatalytic reactions involving chalcogenides for a range of energy and environmental applications. Sections focus on nanostructure control, synthesis methods, activity enhancement strategies, environmental applications, and perspectives of chalcogenide-based nanomaterials. The book offers guidelines for designing new chalcogenide-based nanoscale photocatalysts at low cost and high efficiency for efficient utilization of solar energy in the areas of energy production and environment remediation. - Provides information on the development of novel chalcogenide-based nanomaterials - Outlines the fundamentals of chalcogenides-based photocatalysis - Includes techniques for heterogeneous catalysis based on chalcogenide-based nanomaterials
This thesis focuses on the design and synthesis of novel one-dimensional colloidal chalcogenide hetero-nanostructures for enhancing solar energy conversion applications. Semiconducting nanomaterials are particular attractive for energy conversion due to the quantum confinement effects dictating their unique optical and electronic properties. Steering the photo-induced charge-flow based on unique bandgap alignment in semiconductor heterojunctions is critical for photo-electric/chemical conversion. The author presents the controllable preparation strategies to synthesize 1D chalcogenide hetero-nanostructures with various fine structures, further been used as excellent template materials for preparing other novel and complex hybrid architectures through a series of chemical transformations. The heterogeneous growth mechanisms of novel hetero-nanostructures is studied for developing a facile and general method to prepare more novel heterostructures. The band gap structure simulations, detailed charge carrier behaviour and unique solar energy conversion properties of the prepared hybrid nanostructures are deeply investigated. This work would open a new door to rationally designing hybrid systems for photo-induced applications.
Ternary Quantum Dots: Synthesis, Properties, and Applications reviews the latest advances in ternary (I-III-VI) chalcopyrite quantum dots (QDs), along with their synthesis, properties and applications. Sections address the fundamental key concepts of ternary quantum dots, progress in synthesis strategies (i.e., organic and aqueous synthesis), and characterization methods (i.e., transmission electron microscopy, dynamic light scattering, etc.). Properties of ternary quantum dots are comprehensively reviewed, including optical, chemical and physical properties. The factors and mechanisms of the cytotoxicity of ternary quantum dot-based nanomaterials are also described. Since ternary chalcopyrite quantum dots are less toxic and more environmentally benign than conventional binary II-VI chalcogenide quantum dots, they are being investigated to replace conventional quantum dots in a range of applications. Thus, this book reviews QDs in various applications, such as solar cells, photocatalytic, sensors and bio-applications. - Reviews fundamental concepts of ternary quantum dots and quantum dot-nanocomposites including the most relevant synthesis strategies, key properties, and characterization techniques - Delves into the cytotoxicity of quantum dots looking at the factors and mechanisms that influence cytotoxicity including demonstration of cytotoxicity assays for in vitro and in vivo tests - Touches on the many applications of ternary quantum dots including biomedical applications, applications in solar cells, sensing applications, and photocatalytic applications
This book satisfies the interest and curiosity of beginners in thin film electrode preparations, characterizations, and device making, while providing insight into the area for experts. The considerable literature on ‘metal chalcogenides based carbon composites and their versatile applications’ reflect its importance for research and demonstrate how it’s now reached a level where the timely review is necessary to understand the current progress and recent trends and future opportunities. In the book, the authors examine recent advances in the state-of-the-art fabrication techniques of metal sulfide based carbon composites along with their working mechanisms, associated issues/solutions, and possible future are discussed. In addition, detailed insight into the properties and various applications including principles, design, fabrication, and engineering aspects are further discussed.
This is the first book to specifically focus on semiconductor nanocrystals, and address their synthesis and assembly, optical properties and spectroscopy, and potential areas of nanocrystal-based devices. The enormous potential of nanoscience to impact on industrial output is now clear. Over the next two decades, much of the science will transfer into new products and processes. One emerging area where this challenge will be very successfully met is the field of semiconductor nanocrystals. Also known as colloidal quantum dots, their unique properties have attracted much attention in the last twenty years.
Nanotechnology in the Beverage industry: Fundamentals and Applications looks at how nanotechnology is being used to enhance water quality, as well as how the properties of nanomaterials can be used to create different properties in both alcoholic and no-alcoholic drinks and enhance the biosafety of both drinks and their packaging. This is an important reference for materials scientists, engineers, food scientists and microbiologists who want to learn more about how nanotechnology is being used to enhance beverage products. As active packaging technology, nanotechnology can increase shelf-life and maintain the quality of beverages. In the field of water treatment, nanomaterials offer new routes to address challenges. - Describes the major properties that make nanomaterials good agents for increasing the purification of water and other beverages - Outlines major nanoencapsulation techniques for use in a variety of beverage types - Discusses the major challenges of using nanomaterials in both beverages and beverage packaging
The author provides a unified account of the electrochemical material science of metal chalcogenide (MCh) compounds and alloys with regard to their synthesis, processing and applications. Starting with the chemical fundamentals of the chalcogens and their major compounds, the initial part of the book includes a systematic description of the MCh solids on the basis of the Periodic Table in terms of their structures and key properties. This is followed by a general discussion on the electrochemistry of chalcogen species, and the principles underlying the electrochemical formation of inorganic compounds/alloys. The core of the book offers an insight into available experimental results and inferences regarding the electrochemical preparation and microstructural control of conventional and novel MCh structures. It also aims to survey their photoelectrochemistry, both from a material-oriented point of view and as connected to specific processes such as photocatalysis and solar energy conversion. Finally, the book illustrates the relevance of MCh materials to various applications of electrochemical interest such as (electro)catalysis in fuel cells, energy storage with intercalation electrodes, and ion sensing.
Nanomaterials Synthesis: Design, Fabrication and Applications combines the present and emerging trends of synthesis routes of nanomaterials with the incorporation of various technologies. The book covers the new trends and challenges in the synthesis and surface engineering of a wide range of nanomaterials, including emerging technologies used for their synthesis. Significant properties, safety and sustainability and environmental impacts of the synthesis routes are explored. This book is an important information source that will help materials scientists and engineers who want to learn more about how different classes of nanomaterials are designed. - Highlights recent developments in, and opportunities created by, new nanomaterials synthesis methods - Explains major synthesis techniques for different types of nanomaterials - Discusses the challenges of using a variety of synthesis methods
Energy crises and global warming pose serious challenges to researchers in their attempt to develop a sustainable society for the future. Solar energy conversion is a remarkable, clean, and sustainable way to nullify the effects of fossil fuels. The findings of photocatalytic hydrogen production (PCHP) by Fujishima and Honda propose that “water will be the coal for the future”. Hydrogen is a carbon-free clean fuel with a high specific energy of combustion. Titanium oxide (TiO2), graphitic-carbon nitride (g-C3N4) and cadmium sulfide (CdS) are three pillars of water splitting photocatalysts owing to their superior electronic and optical properties. Tremendous research efforts have been made in recent years to fabricate visible or solar-light, active photocatalysts. The significant features of various oxide, sulfide, and carbon based photocatalysts for cost-effective hydrogen production are presented in this Special Issue. The insights of sacrificial agents on the hydrogen production efficiency of catalysts are also presented in this issue.