Download Free Synergetic Agents Book in PDF and EPUB Free Download. You can read online Synergetic Agents and write the review.

This book addresses both multi robot systems and miniaturization to the nanoscale from a unifying point of view, but without leaving aside typical particularities of either. The unifying aspect is based on the concept of information minimization whose precise formulation is the Haken-Levi-principle. The authors introduce basic concepts of multi-component self-organizing systems such as order parameters (well known from equilibrium and non-equilibrium phase transitions) and the slaving principle (which establishes a link to dynamical systems). Among explicit examples is the docking manoeuvre of two robots in two and three dimensions. The second part of the book deals with the rather recently arising field of molecular robotics. It is particularly here where nature has become a highly influential teacher for the construction of robots. In living biological cells astounding phenomena occur: there are molecules (proteins) that literally walk on polymer strands and transport loads that are heavier than their carriers, or molecules that, by joint action, contract muscles. The book provides the reader with an insight into these phenomena, especially by a detailed theoretical treatment of the molecular mechanism of muscle contraction. At the molecular level, for an appropriate approach the use of quantum theory is indispensable. The authors introduce and use it in a form that avoids all the clumsy calculations of wave-functions. They present a model which is based on an elementary version of quantum field theory and allows taking into account the impact of the surrounding on the quantum mechanical activity of a single molecule. By presenting explicit and pedagogical examples, the reader gets acquainted with the appropriate modelling of the walking behaviour of single molecular robots and their collective behaviour. The further development of multi-robot systems and particularly of molecular robots will require the cooperation of a variety of disciplines. Therefore the book appeals to a wide audience including researchers, instructors, and advanced graduate students.
Over the past years the field of synergetics has been mushrooming. An ever increasing number of scientific papers are published on the subject, and numerous conferences all over the world are devoted to it. Depending on the particular aspects of synergetics being treated, these conferences can have such varied titles as "Nonequilibrium Nonlinear Statistical Physics," "Self-Organization," "Chaos and Order," and others. Many professors and students have expressed the view that the present book provides a good introduction to this new field. This is also reflected by the fact that it has been translated into Russian, Japanese, Chinese, German, and other languages, and that the second edition has also sold out. I am taking the third edition as an opportunity to cover some important recent developments and to make the book still more readable. First, I have largely revised the section on self-organization in continuously extended media and entirely rewritten the section on the Benard instability. Sec ond, because the methods of synergetics are penetrating such fields as eco nomics, I have included an economic model on the transition from full employ ment to underemployment in which I use the concept of nonequilibrium phase transitions developed elsewhere in the book. Third, because a great many papers are currently devoted to the fascinating problem of chaotic motion, I have added a section on discrete maps. These maps are widely used in such problems, and can reveal period-doubling bifurcations, intermittency, and chaos.
This volume focuses on the modeling of cognition, and brings together contributions from psychologists and researchers in the field of cognitive science. The shared platform of this work is to advocate a dynamical systems approach to cognition. Several aspects of this approach are considered here: chaos theory, artificial intelligence and Alfie models, catastrophe theory and, most importantly, self-organization theory or synergetics. The application of nonlinear systems theory to cognitive science in general, and to cognitive psychology in particular, is a growing field that has gained further momentum thanks to new contributions from the science of robotics. The recent development in cognitive science towards an account of embodiment, together with the general approach of complexity theory and dynamics, will have a major impact on our psychological understanding of reasoning, thinking and behavior.
Not since this author's bestselling Manual of Pharmacologic Calculation has there been an available reference for drug data analysis. Incorporating the most relevant parts of that work, Drug Synergism and Dose-Effect Data Analysis focuses on drug combinations and all the quantitative analyses needed to analyze drug combination dose-effect data and to design experiments with two or more compounds. The book contains the statistical methods, the theory, and the computation algorithms needed to analyze single and combination drug data. Numerous examples accompany a presentation that illustrates the calculations and experimental design considerations for modern drug analysis.
The book provides an introduction to some basic concepts of linguistic synergetics, viewed here as a new multidisciplinary research approach to language studies. It also advances diachronic linguosynergetics, focusing on principles and mechanisms of language change and development, and employing the methodological integrity of philosophy, linguistics and synergetics. Diachronic linguosynergetics endeavours to capture language in a state of change, when a language system follows a non-linear path, through numerous fluctuations and dissipation, leading out of chaos to order and stability. The book considers human language as an open, dynamic, non-linear, and self-organising system, with all its hierarchical subsystems and elements coherently interconnected and controlled by governing parameters. Special emphasis is laid on a variety of change rates on different language levels. As such, diachronic linguosynergetics is capable of addressing a broad range of issues concerning language change. It sheds new light on language development and permits better descriptions of phase transitions, or reconfigurations, of language as a synergetic megasystem.
Over the years a number of excellent books have classified and detailed drug drug interactions into their respective categories, e.g. interactions at plasma protein binding sites; those altering intestinal absorption or bioavailability; those involving hepatic metabolising enzymes; those involving competition or antagonism for receptor sites, and drug interactions modifying excretory mechanisms. Such books have presented extensive tables of interactions and their management. Although of considerable value to clinicians, such publica tions have not, however, been so expressive about the individual mechanisms that underlie these interactions. It is within this sphere of "mechanisms" that this present volume specialises. It deals with mechanisms of in vitro and in vivo, drug-drug, drug food and drug-herbals interactions and those that cause drugs to interfere with diagnostic laboratory tests. We believe that an explanation of the mechanisms of such interactions will enable practitioners to understand more fully the nature of the interactions and thus enable them to manage better their clinical outcome. If mechanisms of interactions are better understood, then it may be pos sible for the researcher to develop meaningful animal/biochemical/tissue cul ture or physicochemical models to which new molecules could be exposed during their development stages. The present position, which largely relies on patients experiencing adverse interactions before they can be established or documented, can hardly be regarded as satisfactory. This present volume is classified into two major parts; firstly, pharmacoki netic drug interactions and, secondly, pharmacodynamic drug interactions.
Social computation, whether in the form of a search performed by a swarm of agents or the predictions of markets, often supplies remarkably good solutions to complex problems, which often elude the best experts. There is an intuition, built upon many anecdotal examples, that pervading principles are at play that allow individuals trying to solve a problem locally to aggregate their information to arrive at an outcome superior than any available to isolated parties. Here we show that the general structure of this problem can be cast in terms of information theory and derive general mathematical conditions for information sharing and coordination that lead to optimal multi-agent searches. Specifically we illustrate the problem in terms of the construction of local search algorithms for autonomous agents looking for the spatial location of a stochastic source. We explore the types of search problems -defined in terms of the properties of the source and the nature of measurements at each sensor -for which coordination among multiple searchers yields an advantage beyond that gained by having the same number of independent searchers. We assert that effective coordination corresponds to synergy and that ineffective coordination corresponds to redundancy as defined using information theory. We classify explicit types of sources in terms of their potential for synergy. We show that sources that emit uncorrelated particles based on a Poisson process, provide no opportunity for synergetic coordination while others, particularly sources that emit correlated signals, do allow for strong synergy between searchers. These general considerations are crucial for designing optimal algorithms for particular search problems in real world settings.
It is increasingly being recognized that the experimental and theoretical study of the complex system brain requires the cooperation of many disciplines, in cluding biology, medicine, physics, chemistry, mathematics, computer science, linguistics, and others. In this way brain research has become a truly interdis ciplinary endeavor. Indeed, the most important progress is quite often made when different disciplines cooperate. Thus it becomes necessary for scientists to look across the fence surrounding their disciplines. The present book is written precisely in this spirit. It addresses graduate students, professors and scientists in a variety of fields, such as biology, medicine and physics. Be yond its mathematical representation the book gives ample space to verbal and pictorial descriptions of the main and, as I believe, fundamental new insights, so that it will be of interest to a general readership, too. I use this opportunity to thank my former students, some of whom are my present co-workers, for their cooperation over many years. Among them I wish to mention in particular M. Bestehorn, L. Borland, H. Bunz, A. Daf fertshofer, T. Ditzinger, E. Fischer, A. Fuchs, R. Haas, R. Honlinger, V. Jirsa, M. Neufeld, M. Ossig, D. Reimann, M. Schanz, G. Schoner, P. Tass, C. Uhl. My particular thanks go to R. Friedrich and A. Wunderlin for their constant help in many respects. Stimulating discussions with a number of colleagues from a variety of fields are also highly appreciated.
The book offers a novel approach to the study of the complex dynamics of cities. It is based on (1) Synergetics as a science of cooperation and selforganization, (2) information theory including semantic and pragmatic aspects, and optimization principles, (3) a theory of steady state maintenance, and of (4) phase transition, i.e. qualitative changes of structure or behavior. From this novel theoretical vantage point, the book addresses particularly three issues that stand at the core of current discourse on cities: Urban Scaling, Smart Cities and City Planning. An important consequence of “the 21st century as the age of cities”, is that the study of cities currently attracts scientists from a variety of disciplines, ranging from physics, mathematics and computer science, through urban studies, architecture, planning and human geography, to economics, psychology, sociology, public administration and more. The book is thus likely to attract scholars, researchers and students of these research domains, of complexity theories of cities, as well as of general complexity theory. In addition, it is directed also to practitioners of urbanism, city planning and urban design.