Download Free Synchronization Techniques For Digital Receivers Book in PDF and EPUB Free Download. You can read online Synchronization Techniques For Digital Receivers and write the review.

Synchronization is a critical function in digital communications; its failures may have catastrophic effects on the transmission system performance. Furthermore, synchronization circuits comprehend such a large part of the receiver hardware that their implementation has a substantial impact on the overall costs. For these reasons design engineers are particularly concerned with the development of new and more efficient synchronization structures. Unfortunately, the advent of digital VLSI technology has radically affected modem design rules, to a point that most analog techniques employed so far have become totally obsolete. Although digital synchronization methods are well established by now in the literature, they only appear in the form of technical papers, often concentrating on specific performance or implementation issues. As a consequence they are hardly useful to give a unified view of an otherwise seemingly heterogeneous field. It is widely recognized that a fundamental understanding of digital synchronization can only be reached by providing the designer with a solid theoretical framework, or else he will not know where to adjust his methods when he attempts to apply them to new situations. The task of the present book is just to develop such a framework.
Synchronization is a critical function in digital communications; its failures may have catastrophic effects on the transmission system performance. Furthermore, synchronization circuits comprehend such a large part of the receiver hardware that their implementation has a substantial impact on the overall costs. For these reasons design engineers are particularly concerned with the development of new and more efficient synchronization structures. Unfortunately, the advent of digital VLSI technology has radically affected modem design rules, to a point that most analog techniques employed so far have become totally obsolete. Although digital synchronization methods are well established by now in the literature, they only appear in the form of technical papers, often concentrating on specific performance or implementation issues. As a consequence they are hardly useful to give a unified view of an otherwise seemingly heterogeneous field. It is widely recognized that a fundamental understanding of digital synchronization can only be reached by providing the designer with a solid theoretical framework, or else he will not know where to adjust his methods when he attempts to apply them to new situations. The task of the present book is just to develop such a framework.
This practical guide helps readers to learn how to develop and implement synchronization functions in digital communication systems.
A greatly revised and expanded account of phaselock technology The Third Edition of this landmark book presents new developments in the field of phaselock loops, some of which have never been published until now. Established concepts are reviewed critically and recommendations are offered for improved formulations. The work reflects the author's own research and many years of hands-on experience with phaselock loops. Reflecting the myriad of phaselock loops that are now found in electronic devices such as televisions, computers, radios, and cell phones, the book offers readers much new material, including: * Revised and expanded coverage of transfer functions * Two chapters on phase noise * Two chapters examining digital phaselock loops * A chapter on charge-pump phaselock loops * Expanded discussion of phase detectors and of oscillators * A chapter on anomalous phaselocking * A chapter on graphical aids, including Bode plots, root locus plots, and Nichols charts As in the previous editions, the focus of the book is on underlying principles, which remain valid despite technological advances. Extensive references guide readers to additional information to help them explore particular topics in greater depth. Phaselock Techniques, Third Edition is intended for practicing engineers, researchers, and graduate students. This critically acclaimed book has been thoroughly updated with new information and expanded for greater depth.
Based on the popular Artech House classic, Digital Communication Systems Engineering with Software-Defined Radio, this book provides a practical approach to quickly learning the software-defined radio (SDR) concepts needed for work in the field. This up-to-date volume guides readers on how to quickly prototype wireless designs using SDR for real-world testing and experimentation. This book explores advanced wireless communication techniques such as OFDM, LTE, WLA, and hardware targeting. Readers will gain an understanding of the core concepts behind wireless hardware, such as the radio frequency front-end, analog-to-digital and digital-to-analog converters, as well as various processing technologies. Moreover, this volume includes chapters on timing estimation, matched filtering, frame synchronization message decoding, and source coding. The orthogonal frequency division multiplexing is explained and details about HDL code generation and deployment are provided. The book concludes with coverage of the WLAN toolbox with OFDM beacon reception and the LTE toolbox with downlink reception. Multiple case studies are provided throughout the book. Both MATLAB and Simulink source code are included to assist readers with their projects in the field.
Since the early 1990s, when synchronization of chaotic communication systems became a popular research subject, a vast number of scientific papers have been published. However, most of today’s books on chaotic communication systems deal exclusively with the systems where perfect synchronization is assumed, an assumption which separates theoretical from practical, real world, systems. This book is the first of its kind dealing exclusively with the synchronization techniques for chaotic communication systems. It describes a number of novel robust synchronization techniques, which there is a lack of, for single and multi-user chaotic communication systems published and highly cited in world’s leading journals in the area. In particular, it presents a solution to the problem of robust chaotic synchronization by presenting the first fully synchronized, highly secure, chaos based DS-CDMA system. The book fills a gap in the existing literature where a number of books exist that deal with chaos and chaotic communications but not with synchronization of chaotic communication systems. It also acts as a bridge between communication system theory and chaotic synchronization by carefully explaining the two concepts and demonstrating how they link into chaotic communication systems. The book also presents a detailed literature review on the topic of synchronization of chaotic communication systems. Furthermore, it presents the literature review on the general topic of chaotic synchronization and how those ideas led to the application of chaotic signals to secure chaotic communication systems. It therefore, in addition to presenting the state of the art systems, also presents a detailed history of chaotic communication systems. In summary, the book stands out in the field of synchronization techniques for chaotic communication systems.
Digital Communication Receivers Synchronization, Channel Estimation, and Signal Processing Digital Communication Receivers offers a complete treatment on the theoretical and practical aspects of synchronization and channel estimation from the standpoint of digital signal processing. The focus on these increasingly important topics, the systematic approach to algorithm development, and the linked algorithm-architecture methodology in digital receiver design are unique features of this book. The material is structured according to different classes of transmission channels. In Part C, baseband transmission over wire or optical fiber is addressed. Part D covers passband transmission over satellite or terrestrial wireless channels. Part E deals with transmission over fading channels. Designed for the practicing communication engineer and the graduate student, the book places considerable emphasis on helpful examples, summaries, illustrations, and bibliographies. Contents include: * Basic material * Baseband communications * Passband transmission * Receiver structure for PAM signals * Synthesis of synchronization algorithms * Performance analysis of synchronizers * Bit error degradation caused by random tracking errors * Frequency estimation * Timing adjustment by interpolation * DSP system implementation * Characterization, modeling, and simulation of linear fading channels * Detection and parameter synchronization on fading channels * Receiver structures for fading channels * Parameter synchronization for flat fading channels * Parameter synchronization for selective fading channels
This book, edited and authored by world leading experts, gives a review of the principles, methods and techniques of important and emerging research topics and technologies in wireless communications and transmission techniques. The reader will: - Quickly grasp a new area of research - Understand the underlying principles of a topic and its application - Ascertain how a topic relates to other areas and learn of the research issues yet to be resolved - Reviews important and emerging topics of research in wireless technology in a quick tutorial format - Presents core principles in wireless transmission theory - Provides reference content on core principles, technologies, algorithms, and applications - Includes comprehensive references to journal articles and other literature on which to build further, more specific and detailed knowledge
This two volume set constitutes the refereed post-conference proceedings of the Second International Conference on Machine Learning and Intelligent Communications, MLICOM 2017, held in Weihai, China, in August 2017. The 143 revised full papers were carefully selected from 225 submissions. The papers are organized thematically in machine learning, intelligent positioning and navigation, intelligent multimedia processing and security, intelligent wireless mobile network and security, cognitive radio and intelligent networking, intelligent internet of things, intelligent satellite communications and networking, intelligent remote sensing, visual computing and three-dimensional modeling, green communication and intelligent networking, intelligent ad-hoc and sensor networks, intelligent resource allocation in wireless and cloud networks, intelligent signal processing in wireless and optical communications, intelligent radar signal processing, intelligent cooperative communications and networking.