Download Free Synchronization Control Of Markovian Complex Neural Networks With Time Varying Delays Book in PDF and EPUB Free Download. You can read online Synchronization Control Of Markovian Complex Neural Networks With Time Varying Delays and write the review.

This monograph studies the synchronization control of Markovian complex neural networks with time-varying delays, and the structure of the book is summarized as follows. Chapter 1 introduces the system description and some background knowledges, and also addresses the motivations of this monograph. In Chapter 2, the stochastic synchronization issue of Markovian coupled neural networks with partially unknown transition rates and random coupling strengths is investigated. In Chapter 3, the local synchronization issue of Markovian neutral complex networks with partially information of transition rates is investigated. The new delay-dependent synchronization criteria in terms of LMIs are derived, which depends on the upper and lower bounds of the delays. In Chapter 4, the local synchronization issue of Markovian nonlinear coupled neural networks with uncertain and partially unknown transition rates is investigated. The less conservative local synchronization criteria containing the bounds of delay and delay derivative are obtained based on the novel augmented Lyapunov-Krasovskii functional and a new integral inequality. In Chapter 5, the sampled-data synchronization issue of delayed complex networks with aperiodic sampling interval is investigated based on enhanced input delay approach, which makes full use of the upper bound of the variable sampling interval and the sawtooth structure information of varying input delay. In Chapter 6, the sampled-data synchronization issue of Markovian coupled neural networks with mode-dependent interval time-varying delays and aperiodic sampling intervals is investigated based on an enhanced input delay approach. Furthermore, the mode-dependent sampled-data controllers are proposed based on the delay dependent synchronization criteria. In Chapter 7, the synchronization issue of inertial neural networks with time-varying delays and generally Markovian jumping is investigated. In Chapter 8, we conclude the monograph by briefly summarizing the main theoretical findings.
This textbook provides the first systematic presentation of the theory of stochastic differential equations with Markovian switching. It presents the basic principles at an introductory level but emphasizes current advanced level research trends. The material takes into account all the features of Ito equations, Markovian switching, interval systems and time-lag. The theory developed is applicable in different and complicated situations in many branches of science and industry.
This book is a self-contained presentation of the background and progress of the study of time-delay systems, a subject with broad applications to a number of areas.
In recent years, complex-valued neural networks have widened the scope of application in optoelectronics, imaging, remote sensing, quantum neural devices and systems, spatiotemporal analysis of physiological neural systems, and artificial neural information processing. In this first-ever book on complex-valued neural networks, the most active scientists at the forefront of the field describe theories and applications from various points of view to provide academic and industrial researchers with a comprehensive understanding of the fundamentals, features and prospects of the powerful complex-valued networks.
This edited book introduces readers to new analytical techniques and controller design schemes used to solve the emerging “hottest” problems in dynamic control systems and networks. In recent years, the study of dynamic systems and networks has faced major changes and challenges with the rapid advancement of IT technology, accompanied by the 4th Industrial Revolution. Many new factors that now have to be considered, and which haven’t been addressed from control engineering perspectives to date, are naturally emerging as the systems become more complex and networked. The general scope of this book includes the modeling of the system itself and uncertainty elements, examining stability under various criteria, and controller design techniques to achieve specific control objectives in various dynamic systems and networks. In terms of traditional stability matters, this includes the following special issues: finite-time stability and stabilization, consensus/synchronization, fault-tolerant control, event-triggered control, and sampled-data control for classical linear/nonlinear systems, interconnected systems, fractional-order systems, switched systems, neural networks, and complex networks. In terms of introducing graduate students and professional researchers studying control engineering and applied mathematics to the latest research trends in the areas mentioned above, this book offers an excellent guide.
This book introduces selected recent findings on the analysis and control of dynamical behaviors for coupled reaction-diffusion neural networks. It presents novel research ideas and essential definitions concerning coupled reaction-diffusion neural networks, such as passivity, adaptive coupling, spatial diffusion coupling, and the relationship between synchronization and output strict passivity. Further, it gathers research results previously published in many flagship journals, presenting them in a unified form. As such, the book will be of interest to all university researchers and graduate students in Engineering and Mathematics who wish to study the dynamical behaviors of coupled reaction-diffusion neural networks.
This book provides up-to-date developments in the stability analysis and (anti-)synchronization control area for complex-valued neural networks systems with time delay. It brings out the characteristic systematism in them and points out further insight to solve relevant problems. It presents a comprehensive, up-to-date, and detailed treatment of dynamical behaviors including stability analysis and (anti-)synchronization control. The materials included in the book are mainly based on the recent research work carried on by the authors in this domain. The book is a useful reference for all those from senior undergraduates, graduate students, to senior researchers interested in or working with control theory, applied mathematics, system analysis and integration, automation, nonlinear science, computer and other related fields, especially those relevant scientific and technical workers in the research of complex-valued neural network systems, dynamic systems, and intelligent control theory.
This book is mainly focused on the global impulsive synchronization of complex dynamical networks with different types of couplings, such as general state coupling, nonlinear state coupling, time-varying delay coupling, derivative state coupling, proportional delay coupling and distributed delay coupling. Studies on impulsive synchronization of complex dynamical networks have attracted engineers and scientists from various disciplines, such as electrical engineering, mechanical engineering, mathematics, network science, system engineering. Pursuing a holistic approach, the book establishes a fundamental framework for this topic, while emphasizing the importance of network synchronization and the significant influence of impulsive control in the design and optimization of complex networks. The primary audience for the book would be the scholars and graduate students whose research topics including the network science, control theory, applied mathematics, system science and so on.
This book intends to introduce some recent results on passivity of complex dynamical networks with single weight and multiple weights. The book collects novel research ideas and some definitions in complex dynamical networks, such as passivity, output strict passivity, input strict passivity, finite-time passivity, and multiple weights. Furthermore, the research results previously published in many flagship journals are methodically edited and presented in a unified form. The book is likely to be of interest to university researchers and graduate students in Engineering and Mathematics who wish to study the passivity of complex dynamical networks.