Download Free Symmetry In Complex Network Systems Book in PDF and EPUB Free Download. You can read online Symmetry In Complex Network Systems and write the review.

This book bridges the current gap between the theory of symmetry-based dynamics and its application to model and analyze complex systems. As an alternative approach, the authors use the symmetry of the system directly to formulate the appropriate models, and also to analyze the dynamics. Complex systems with symmetry arise in a wide variety of fields, including communication networks, molecular dynamics, manufacturing businesses, ecosystems, underwater vehicle dynamics, celestial and spacecraft dynamics and continuum mechanics. A general approach for their analysis has been to derive a detailed model of their individual parts, connect the parts and note that the system contains some sort of symmetry, then attempt to exploit this symmetry in order to simplify numerical computations. This approach can result in highly complicated models that are difficult to analyze even numerically. The alternative approach, while nonstandard, is not entirely new among the mathematics community. However, there is much less familiarity with the techniques of symmetry-breaking bifurcation, as they apply to the engineering, design and fabrication, of complex systems, in particular, nonlinear sensor devices with special emphasis on the conceptualization and development of new technologies of magnetic sensors such as fluxgate magnetometers and SQUID (Superconducting Quantum Interference Devices), E-- (electric-field) sensors, and communication and navigation systems that require multiple frequencies of operation, such as radar and antenna devices as well as gyroscopic systems.
This book is a printed edition of the Special Issue "Symmetry Measures on Complex Networks" that was published in Symmetry
A network is a mathematical object consisting of a set of points (called vertices or nodes) that are connected to each other in some fashion by lines (called edges). Turns out this simple description corresponds to a bewildering array of systems in the real world, ranging from technological ones such as the Internet and World Wide Web, biological networks such as that of connections of the nervous systems or blood vessels, food webs, protein interactions, infrastructural systems such as networks of roads, airports or the power-grid, to patterns of social acquaintance such as friendship, network of Hollywood actors, connections between business houses and many more. Recent years have witnessed a substantial amount of interest within the scientific community in the properties of these networks. The emergence of the internet in particular, coupled with the widespread availability of inexpensive computing resources has facilitated studies ranging from large scale empirical analysis of networks in the real world, to the development of theoretical models and tools to explore the various properties of these systems. The study of networks is broadly interdisciplinary and central developments have occurred in many fields, including mathematics, physics, computer and information sciences, biology, and the social sciences. This book brings together a collection of cutting-edge research in the field from a diverse array of researchers ranging from physicists to social scientists, and presents them in a coherent fashion, highlighting the strong interconnections between the different areas. Topics included are social networks and social media, opinion and innovation diffusion, syncronization, transportation networks and human mobility, as well as theory, modeling and metrics of Complex Networks.
Complex networks are typically not homogeneous, as they tend to display an array of structures at different scales. A feature that has attracted a lot of research is their modular organisation, i.e., networks may often be considered as being composed of certain building blocks, or modules. In this Element, the authors discuss a number of ways in which this idea of modularity can be conceptualised, focusing specifically on the interplay between modular network structure and dynamics taking place on a network. They discuss, in particular, how modular structure and symmetries may impact on network dynamics and, vice versa, how observations of such dynamics may be used to infer the modular structure. They also revisit several other notions of modularity that have been proposed for complex networks and show how these can be related to and interpreted from the point of view of dynamical processes on networks.
I was invited to join the Organizing Committee of the First International Conference on Complex Sciences: Theory and Applications (Complex 2009) as its ninth member. At that moment, eight distinguished colleagues, General Co-chairs Eugene Stanley and Gaoxi Xiao, Technical Co-chairs János Kertész and Bing-Hong Wang, Local Co-chairs Hengshan Wang and Hong-An Che, Publicity Team Shi Xiao and Yubo Wang, had spent hundreds of hours pushing the conference half way to its birth. Ever since then, I have been amazed to see hundreds of papers flooding in, reviewed and commented on by the TPC members. Finally, more than 200 contributions were - lected for the proceedings currently in your hands. They include about 200 papers from the main conference (selected from more than 320 submissions) and about 33 papers from the five collated workshops: Complexity Theory of Art and Music (COART) Causality in Complex Systems (ComplexCCS) Complex Engineering Networks (ComplexEN) Modeling and Analysis of Human Dynamics (MANDYN) Social Physics and its Applications (SPA) Complex sciences are expanding their colonies at such a dazzling speed that it - comes literally impossible for any conference to cover all the frontiers.
This book includes original research papers related to renewable energy and power systems in which theoretical or practical issues of symmetry are considered. The book includes contributions on voltage stability analysis in DC networks, optimal dispatch of islanded microgrid systems, reactive power compensation, direct power compensation, optimal location and sizing of photovoltaic sources in DC networks, layout of parabolic trough solar collectors, topologic analysis of high-voltage transmission grids, geometric algebra and power systems, filter design for harmonic current compensation. The contributions included in this book describe the state of the art in this field and shed light on the possibilities that the study of symmetry has in power grids and renewable energy systems.
This book presents unique compendium of groundbreaking ideas where scientists from many different backgrounds are united in their interest in interdisciplinary approaches towards origins and development of cancers, innovative ways of searching for cancer treatment and the role of cancer in the evolution. Chapters give an unequivocal slice of all areas that relate to a quest for understanding cancer and its origin as many-fold nonlinear system, complexity of the cancer developments, a search for cancer treatment using artificial intelligence and evolutionary optimisation, novel modelling techniques, molecular origin of cancer, the role of cancer in evolution of species, interpretation of cancer in terms of artificial life and artificial immune systems, swarm intelligence, cellular automata, computational systems biology, genetic networks, cellular computing, validation through in vitro/vivo tumour models and tumour on chip devices. The book is an inspiring blend of theoretical and experimental results, concepts and paradigms. Distinctive features The book advances widely popular topics of cancer origin, treatment and understanding of its progress The book is comprised of unique chapters written by world top experts in theoretical and applied oncology, complexity theory, mathematics, computer science. The book illustrates attractive examples of mathematical and computer models and experimental setups.
Cosmic evolution leads from symmetry to complexity by symmetry breaking and phase transitions. The emergence of new order and structure in nature and society is explained by physical, chemical, biological, social and economic self-organization, according to the laws of nonlinear dynamics. All these dynamical systems are considered computational systems processing information and entropy. Are symmetry and complexity only useful models of science or are they universals of reality? Symmetry and Complexity discusses the fascinating insights gained from natural, social and computer sciences, philosophy and the arts. With many diagrams and pictures, this book illustrates the spirit and beauty of nonlinear science. In the complex world of globalization, it strongly argues for unity in diversity.
Fuelled by the big data paradigm, the study of networks is an interdisciplinary field that is growing at the interface of many branches of science including mathematics, physics, computer science, biology, economics and the social sciences. This book, written by experts from the Network Science community, covers a wide range of theoretical and practical advances in this highly active field, highlighting the strong interconnections between works in different disciplines. The eleven chapters take the reader through the essential concepts for the structural analysis of networks, and their applications to real-world scenarios. Being self-contained, the book is intended for researchers, graduate and advanced undergraduate students from different intellectual backgrounds. Each chapter combines mathematical rigour with rich references to the literature, while remaining accessible to a wide range of readers who wish to understand some of the key issues encountered in many aspects of networked everyday life.
This book constitutes the refereed post-proceedings of the Second International Conference on High Performance Networking, Computing, and Communication systems, ICHCC 2011, held in Singapore in May 2011. The conference was held together with the Second International Conference on Theoretical and Mathematical Foundations of Computer Science, ICTMF 2011, which proceedings are published in CCIS 164. The 84 revised selected papers presented were carefully reviewed and selected for inclusion in the book. The topics covered range from computational science, engineering and technology to digital signal processing, and computational biology to game theory, and other related topices.