Download Free Symmetry In Classical And Fuzzy Algebraic Hypercompositional Structures Book in PDF and EPUB Free Download. You can read online Symmetry In Classical And Fuzzy Algebraic Hypercompositional Structures and write the review.

This book is a collection of 12 innovative research papers in the field of hypercompositional algebra, 7 of them being more theoretically oriented, with the other 5 presenting strong applicative aspects in engineering, control theory, artificial intelligence, and graph theory. Hypercompositional algebra is now a well-established branch of abstract algebra dealing with structures endowed with multi-valued operations, also called hyperoperations, having a set as the result of the interrelation between two elements of the support set. The theoretical papers in this book are principally related to three main topics: (semi)hypergroups, hyperfields, and BCK-algebra. Heidari and Cristea present a natural generalization of breakable semigroups, defining the breakable semihypergroups where every non-empty subset is a subsemihypergroup. Using the fundamental relation β on a hypergroup, some new properties of the β-classes are obtained by De Salvo et al., who introduced and investigated the notion of height of a β-class. Based on the properties of a cyclic hypergroup of particular matrices, Krehlik and Vyroubalova describe the symmetry of lower and upper approximations in certain rough sets connected with this hypergroup. These results suggest an application to the study of detection sensors. In the framework of hyperrings and hyperfields theory, a new line of research has been developed regarding hyperhomographies on Krasner hyperfields, with interesting applications in cryptography (Vahedi et al.) and new fuzzy weak hyperideals were defined in Hv-rings by using the concept of fuzzy multiset (Al Tahan et al.), for which some algebraic properties were obtained. Two articles are dedicated to the study of BCK-algebras. Bordbar et al. present the properties of the relative annihilator in lower BCK-semilattices, whereas several types of intuitionistic fuzzy soft ideals in hyper BCK-algebras were defined and studied by Xin et al. Increasing numbers of researchers are interested in the applicative aspects of algebraic hypercompositional structures. For example, new properties related with symmetric relations are emphasized by Chvalina and Smetana for the structures and hyperstructures of artificial neurons. Novak et al. present a mathematical model based on elements of algebraic hyperstructure theory, used in the context of underwater wireless sensor networks. A construction of granular structures using m-polar fuzzy hypergraphs and level hypergraphs is illustrated in Luqman et al. using examples from a real-life problem. In the last paper in this book, Akram et al. discuss some properties related to edge regularity for q-rung picture fuzzy graphs.
This book is a collection of 12 innovative research papers in the field of hypercompositional algebra, 7 of them being more theoretically oriented, with the other 5 presenting strong applicative aspects in engineering, control theory, artificial intelligence, and graph theory. Hypercompositional algebra is now a well-established branch of abstract algebra dealing with structures endowed with multi-valued operations, also called hyperoperations, having a set as the result of the interrelation between two elements of the support set. The theoretical papers in this book are principally related to three main topics: (semi)hypergroups, hyperfields, and BCK-algebra. Heidari and Cristea present a natural generalization of breakable semigroups, defining the breakable semihypergroups where every non-empty subset is a subsemihypergroup. Using the fundamental relation ? on a hypergroup, some new properties of the.
The theory of algebraic hyperstructures, in particular the theory of Krasner hyperrings, has seen a spectacular development in the last 20 years, which is why a book dedicated to the study of these is so vital. Krasner hyperrings are a generalization of hyperfields, introduced by Krasner in order to study complete valued fields. A Krasner hyperring (R, +, .) is an algebraic structure, where (R, +) is a canonical hypergroup, (R, .) is a semigroup having zero as a bilaterally absorbing element and the multiplication is distributive with respect to the hyperoperation +.Krasner Hyperring Theory presents an elaborate study on hyperstructures, particularly Krasner hyperrings, across 10 chapters with extensive examples. It contains the results of the authors, but also of other researchers in the field, focusing especially on recent research. This book is especially addressed to doctoral students or researchers in the field, as well as to all those interested in this interesting part of algebra, with applications in other fields.
This book contains recent contributions to the fields of rigidity and symmetry with two primary focuses: to present the mathematically rigorous treatment of rigidity of structures and to explore the interaction of geometry, algebra and combinatorics. Contributions present recent trends and advances in discrete geometry, particularly in the theory of polytopes. The rapid development of abstract polytope theory has resulted in a rich theory featuring an attractive interplay of methods and tools from discrete geometry, group theory, classical geometry, hyperbolic geometry and topology. Overall, the book shows how researchers from diverse backgrounds explore connections among the various discrete structures with symmetry as the unifying theme. The volume will be a valuable source as an introduction to the ideas of both combinatorial and geometric rigidity theory and its applications, incorporating the surprising impact of symmetry. It will appeal to students at both the advanced undergraduate and graduate levels, as well as post docs, structural engineers and chemists.
Proceedings of a symposium held in Landesbildungszentrum Schloss Hofen, Lochau, Vorarlberg, Austria, July 30-August 3, 1990
This book furnishes a brief introduction to classical mirror symmetry, a term that denotes the process of computing Gromov–Witten invariants of a Calabi–Yau threefold by using the Picard–Fuchs differential equation of period integrals of its mirror Calabi–Yau threefold. The book concentrates on the best-known example, the quintic hypersurface in 4-dimensional projective space, and its mirror manifold.First, there is a brief review of the process of discovery of mirror symmetry and the striking result proposed in the celebrated paper by Candelas and his collaborators. Next, some elementary results of complex manifolds and Chern classes needed for study of mirror symmetry are explained. Then the topological sigma models, the A-model and the B-model, are introduced. The classical mirror symmetry hypothesis is explained as the equivalence between the correlation function of the A-model of a quintic hyper-surface and that of the B-model of its mirror manifold.On the B-model side, the process of construction of a pair of mirror Calabi–Yau threefold using toric geometry is briefly explained. Also given are detailed explanations of the derivation of the Picard–Fuchs differential equation of the period integrals and on the process of deriving the instanton expansion of the A-model Yukawa coupling based on the mirror symmetry hypothesis.On the A-model side, the moduli space of degree d quasimaps from CP^1 with two marked points to CP^4 is introduced, with reconstruction of the period integrals used in the B-model side as generating functions of the intersection numbers of the moduli space. Lastly, a mathematical justification for the process of the B-model computation from the point of view of the geometry of the moduli space of quasimaps is given.The style of description is between that of mathematics and physics, with the assumption that readers have standard graduate student backgrounds in both disciplines.
The book presents an updated study of hypergroups, being structured on 12 chapters in starting with the presentation of the basic notions in the domain: semihypergroups, hypergroups, classes of subhypergroups, types of homomorphisms, but also key notions: canonical hypergroups, join spaces and complete hypergroups. A detailed study is dedicated to the connections between hypergroups and binary relations, starting from connections established by Rosenberg and Corsini. Various types of binary relations are highlighted, in particular equivalence relations and the corresponding quotient structures, which enjoy certain properties: commutativity, cyclicity, solvability.A special attention is paid to the fundamental beta relationship, which leads to a group quotient structure. In the finite case, the number of non-isomorphic Rosenberg hypergroups of small orders is mentioned. Also, the study of hypergroups associated with relations is extended to the case of hypergroups associated to n-ary relations. Then follows an applied excursion of hypergroups in important chapters in mathematics: lattices, Pawlak approximation, hypergraphs, topology, with various properties, characterizations, varied and interesting examples. The bibliography presented is an updated one in the field, followed by an index of the notions presented in the book, useful in its study.
This book is intended as an introduction to fuzzy algebraic hyperstructures. As the first in its genre, it includes a number of topics, most of which reflect the authors’ past research and thus provides a starting point for future research directions. The book is organized in five chapters. The first chapter introduces readers to the basic notions of algebraic structures and hyperstructures. The second covers fuzzy sets, fuzzy groups and fuzzy polygroups. The following two chapters are concerned with the theory of fuzzy Hv-structures: while the third chapter presents the concept of fuzzy Hv-subgroup of Hv-groups, the fourth covers the theory of fuzzy Hv-ideals of Hv-rings. The final chapter discusses several connections between hypergroups and fuzzy sets, and includes a study on the association between hypergroupoids and fuzzy sets endowed with two membership functions. In addition to providing a reference guide to researchers, the book is also intended as textbook for undergraduate and graduate students.