Download Free Symmetric Spaces Short Courses Presented At Washington University Book in PDF and EPUB Free Download. You can read online Symmetric Spaces Short Courses Presented At Washington University and write the review.

What do the classification of algebraic surfaces, Weyl's dimension formula and maximal orders in central simple algebras have in common? All are related to a type of manifold called locally mixed symmetric spaces in this book. The presentation emphasizes geometric concepts and relations and gives each reader the "roter Faden", starting from the basics and proceeding towards quite advanced topics which lie at the intersection of differential and algebraic geometry, algebra and topology. Avoiding technicalities and assuming only a working knowledge of real Lie groups, the text provides a wealth of examples of symmetric spaces. The last two chapters deal with one particular case (Kuga fiber spaces) and a generalization (elliptic surfaces), both of which require some knowledge of algebraic geometry. Of interest to topologists, differential or algebraic geometers working in areas related to arithmetic groups, the book also offers an introduction to the ideas for non-experts.
Introduces uniform constructions of most of the known compactifications of symmetric and locally symmetric spaces, with emphasis on their geometric and topological structures Relatively self-contained reference aimed at graduate students and research mathematicians interested in the applications of Lie theory and representation theory to analysis, number theory, algebraic geometry and algebraic topology
Investigations by Baire, Lebesgue, Hausdorff, Marczewski, and othes have culminated invarious schemes for classifying point sets. This important reference/text bringstogether in a single theoretical framework the properties common to these classifications.Providing a clear, thorough overview and analysis of the field, Point Set Theoryutilizes the axiomatically determined notion of a category base for extending generaltopological theorems to a higher level of abstraction ... axiomatically unifies analogiesbetween Baire category and Lebesgue measure . .. enhances understanding of thematerial with numerous examples and discussions of abstract concepts ... and more.Imparting a solid foundation for the modem theory of real functions and associated areas,this authoritative resource is a vital reference for set theorists, logicians, analysts, andresearch mathematicians involved in topology, measure theory, or real analysis. It is anideal text for graduate mathematics students in the above disciplines who havecompleted undergraduate courses in set theory and real analysis.
Classroom-tested and lucidly written, Multivariable Calculus gives a thorough and rigoroustreatment of differential and integral calculus of functions of several variables. Designed as ajunior-level textbook for an advanced calculus course, this book covers a variety of notions,including continuity , differentiation, multiple integrals, line and surface integrals, differentialforms, and infinite series. Numerous exercises and examples throughout the book facilitatethe student's understanding of important concepts.The level of rigor in this textbook is high; virtually every result is accompanied by a proof. Toaccommodate teachers' individual needs, the material is organized so that proofs can be deemphasizedor even omitted. Linear algebra for n-dimensional Euclidean space is developedwhen required for the calculus; for example, linear transformations are discussed for the treatmentof derivatives.Featuring a detailed discussion of differential forms and Stokes' theorem, Multivariable Calculusis an excellent textbook for junior-level advanced calculus courses and it is also usefulfor sophomores who have a strong background in single-variable calculus. A two-year calculussequence or a one-year honor calculus course is required for the most successful use of thistextbook. Students will benefit enormously from this book's systematic approach to mathematicalanalysis, which will ultimately prepare them for more advanced topics in the field.
Differentilil Geometry and Relativity Theory: An Introduction approaches relativity asa geometric theory of space and time in which gravity is a manifestation of space-timecurvature, rathe1 than a force. Uniting differential geometry and both special and generalrelativity in a single source, this easy-to-understand text opens the general theory of relativityto mathematics majors having a backgr.ound only in multivariable calculus and linearalgebra.The book offers a broad overview of the physical foundations and mathematical details ofrelativity, and presents concrete physical interpretations of numerous abstract concepts inRiemannian geometry. The work is profusely illustrated with diagrams aiding in the understandingof proofs and explanations. Appendices feature important material on vectoranalysis and hyperbolic functions.Differential Geometry and Relativity Theory: An Introduction serves as the ideal textfor high-level undergraduate couues in mathematics and physics, and includes a solutionsmanual augmenting classroom study. It is an invaluable reference for mathematicians interestedin differential and IUemannian geometry, or the special and general theories ofrelativity
This book presents an introduction to the structure and representation theory of modular Lie algebras over fields of positive characteristic. It introduces the beginner to the theory of modular Lie algebras and is meant to be a reference text for researchers.
Guides students from simple aspects of set theory to more complex structures. Based on a two-semester course in real analysis, this textbook explains fundamentals of the theory of functions of a real variable, including subsets of the line, the theory of measure, the Lebesgue integral and its relati
This book presents a systematic introduction to the theory of holomorphic mappings in normed spaces which has been scattered throughout the literature. It gives the necessary, elementary background for all branches of modern mathematics involving differential calculus in higher dimensional spaces.
This textbook is designed for students with at least one solid semester of abstract algebra,some linear algebra background, and no previous knowledge of module theory. Modulesand the Structure of Rings details the use of modules over a ring as a means of consideringthe structure of the ring itself--explaining the mathematics and "inductivereasoning" used in working on ring theory challenges and emphasizing modules insteadof rings.Stressing the inductive aspect of mathematical research underlying the formal deductivestyle of the literature, this volume offers vital background on current methods for solvinghard classification problems of algebraic structures. Written in an informal butcompletely rigorous style, Modules and the Structure of Rings clarifies sophisticatedproofs ... avoids the formalism of category theory ... aids independent study or seminarwork ... and supplies end-of-chapter problems.This book serves as an excellent primary.text for upper-level undergraduate and graduatestudents in one-semester courses on ring or module theory-laying a foundation formore advanced study of homological algebra or module theory.