Download Free Symmetric Spaces General Theory Book in PDF and EPUB Free Download. You can read online Symmetric Spaces General Theory and write the review.

A great book ... a necessary item in any mathematical library. --S. S. Chern, University of California A brilliant book: rigorous, tightly organized, and covering a vast amount of good mathematics. --Barrett O'Neill, University of California This is obviously a very valuable and well thought-out book on an important subject. --Andre Weil, Institute for Advanced Study The study of homogeneous spaces provides excellent insights into both differential geometry and Lie groups. In geometry, for instance, general theorems and properties will also hold for homogeneous spaces, and will usually be easier to understand and to prove in this setting. For Lie groups, a significant amount of analysis either begins with or reduces to analysis on homogeneous spaces, frequently on symmetric spaces. For many years and for many mathematicians, Sigurdur Helgason's classic Differential Geometry, Lie Groups, and Symmetric Spaces has been--and continues to be--the standard source for this material. Helgason begins with a concise, self-contained introduction to differential geometry. Next is a careful treatment of the foundations of the theory of Lie groups, presented in a manner that since 1962 has served as a model to a number of subsequent authors. This sets the stage for the introduction and study of symmetric spaces, which form the central part of the book. The text concludes with the classification of symmetric spaces by means of the Killing-Cartan classification of simple Lie algebras over $\mathbb{C}$ and Cartan's classification of simple Lie algebras over $\mathbb{R}$, following a method of Victor Kac. The excellent exposition is supplemented by extensive collections of useful exercises at the end of each chapter. All of the problems have either solutions or substantial hints, found at the back of the book. For this edition, the author has made corrections and added helpful notes and useful references. Sigurdur Helgason was awarded the Steele Prize for Differential Geometry, Lie Groups, and Symmetric Spaces and Groups and Geometric Analysis.
This book is intended to introduce researchers and graduate students to the concepts of causal symmetric spaces. To date, results of recent studies considered standard by specialists have not been widely published. This book seeks to bring this information to students and researchers in geometry and analysis on causal symmetric spaces.Includes the newest results in harmonic analysis including Spherical functions on ordered symmetric space and the holmorphic discrete series and Hardy spaces on compactly casual symmetric spacesDeals with the infinitesimal situation, coverings of symmetric spaces, classification of causal symmetric pairs and invariant cone fieldsPresents basic geometric properties of semi-simple symmetric spacesIncludes appendices on Lie algebras and Lie groups, Bounded symmetric domains (Cayley transforms), Antiholomorphic Involutions on Bounded Domains and Para-Hermitian Symmetric Spaces
This unique text is an introduction to harmonic analysis on the simplest symmetric spaces, namely Euclidean space, the sphere, and the Poincaré upper half plane. This book is intended for beginning graduate students in mathematics or researchers in physics or engineering. Written with an informal style, the book places an emphasis on motivation, concrete examples, history, and, above all, applications in mathematics, statistics, physics, and engineering. Many corrections and updates have been incorporated in this new edition. Updates include discussions of P. Sarnak and others' work on quantum chaos, the work of T. Sunada, Marie-France Vignéras, Carolyn Gordon, and others on Mark Kac's question "Can you hear the shape of a drum?", A. Lubotzky, R. Phillips and P. Sarnak's examples of Ramanujan graphs, and, finally, the author's comparisons of continuous theory with the finite analogues. Topics featured throughout the text include inversion formulas for Fourier transforms, central limit theorems, Poisson's summation formula and applications in crystallography and number theory, applications of spherical harmonic analysis to the hydrogen atom, the Radon transform, non-Euclidean geometry on the Poincaré upper half plane H or unit disc and applications to microwave engineering, fundamental domains in H for discrete groups Γ, tessellations of H from such discrete group actions, automorphic forms, and the Selberg trace formula and its applications in spectral theory as well as number theory.
Locally symmetric spaces are generalizations of spaces of constant curvature. In this book the author presents the proof of a remarkable phenomenon, which he calls "strong rigidity": this is a stronger form of the deformation rigidity that has been investigated by Selberg, Calabi-Vesentini, Weil, Borel, and Raghunathan. The proof combines the theory of semi-simple Lie groups, discrete subgroups, the geometry of E. Cartan's symmetric Riemannian spaces, elements of ergodic theory, and the fundamental theorem of projective geometry as applied to Tit's geometries. In his proof the author introduces two new notions having independent interest: one is "pseudo-isometries"; the other is a notion of a quasi-conformal mapping over the division algebra K (K equals real, complex, quaternion, or Cayley numbers). The author attempts to make the account accessible to readers with diverse backgrounds, and the book contains capsule descriptions of the various theories that enter the proof.
Harmonic analysis on Riemannian semisimple symmetric spaces and on special types of non-Riemannian semisimple symmetric spaces are well-established theories. This book presents a systematic treatment of the basic problems on semisimple symmetric spaces and a discussion of some of the more important recent developments in the field. The author's primary contribution has been his idea of how to construct the discrete series for such a space. In this book a fundamental role is played by the ideas behind that construction, namely the duality principle, the orbit picture related to it, and the definition of representations by means of distributions on the orbits. Intended as a text at the upper graduate level, the book assumes a basic knowledge of Fourier analysis, differential geometry, and functional analysis. In particular, the reader should have a good knowledge of the general theory of real and complex Lie algebras and Lie groups and of the root and weight theories for semisimple Lie algebras and Lie groups.
This is the only book on the subject of group theory and Einstein's theory of gravitation. It contains an extensive discussion on general relativity from the viewpoint of group theory and gauge fields. It also puts together in one volume many scattered, original works, on the use of group theory in general relativity theory. There are twelve chapters in the book. The first six are devoted to rotation and Lorentz groups, and their representations. They include the spinor representation as well as the infinite-dimensional representations. The other six chapters deal with the application of groups -- particularly the Lorentz and the SL(2, C) groups -- to the theory of general relativity. Each chapter is concluded with a set of problems. The topics covered range from the fundamentals of general relativity theory, its formulation as an SL(2, C) gauge theory, to exact solutions of the Einstein gravitational field equations. The important Bondi-Metzner-Sachs group, and its representations, conclude the book The entire book is self-contained in both group theory and general relativity theory, and no prior knowledge of either is assumed. The subject of this book constitutes a relevant link between field theoreticians and general relativity theoreticians, who usually work rather independently of each other. The treatise is highly topical and of real interest to theoretical physicists, general relativists and applied mathematicians. It is invaluable to graduate students and research workers in quantum field theory, general relativity and elementary particle theory.
Well, finally, here it is-the long-promised "Revenge of the Higher Rank Symmetric Spaces and Their Fundamental Domains." When I began work on it in 1977, I would probably have stopped immediately if someone had told me that ten years would pass before I would declare it "finished." Yes, I am declaring it finished-though certainly not perfected. There is a large amount of work going on at the moment as the piles of preprints reach the ceiling. Nevertheless, it is summer and the ocean calls. So I am not going to spend another ten years revising and polishing. But, gentle reader, do send me your corrections and even your preprints. Thanks to your work, there is an Appendix at the end of this volume with corrections to Volume I. I said it all in the Preface to Volume I. So I will try not to repeat myself here. Yes, the "recent trends" mentioned in that Preface are still just as recent.
Key definitions and results in symmetric spaces, particularly Lp, Lorentz, Marcinkiewicz and Orlicz spaces are emphasized in this textbook. A comprehensive overview of the Lorentz, Marcinkiewicz and Orlicz spaces is presented based on concepts and results of symmetric spaces. Scientists and researchers will find the application of linear operators, ergodic theory, harmonic analysis and mathematical physics noteworthy and useful. This book is intended for graduate students and researchers in mathematics and may be used as a general reference for the theory of functions, measure theory, and functional analysis. This self-contained text is presented in four parts totaling seventeen chapters to correspond with a one-semester lecture course. Each of the four parts begins with an overview and is subsequently divided into chapters, each of which concludes with exercises and notes. A chapter called “Complements” is included at the end of the text as supplementary material to assist students with independent work.