Download Free Symbolic Program Analysis And Optimization For Parallelizing Compilers Book in PDF and EPUB Free Download. You can read online Symbolic Program Analysis And Optimization For Parallelizing Compilers and write the review.

This book presents novel symbolic control and data flow techniques as well as symbolic techniques and algorithms for program analysis and program optimization. Program contexts, defining a new symbolic description of program semantics for control and data flow analysis, are at the center of the techniques and methods introduced. The authors develop solutions for a number of problems encountered in program analysis by using program contexts. The solutions proposed are efficient, versatile, unified, and more general than most existing methods. The authors' symbolic analysis framework is implemented as a prototype as part of the Vienna High Performance Compiler.
A systematic method for generalized strength reduction based on this representation is also presented. This results in an effective scheme for exploitation of parallelism and optimization of the code. Symbolic analysis also serves as a basis for other code generation optimizations such as elimination of redundant computations."
In Symbolic Analysis for Parallelizing Compilers the author presents an excellent demonstration of the effectiveness of symbolic analysis in tackling important optimization problems, some of which inhibit loop parallelization. The framework that Haghighat presents has proved extremely successful in induction and wraparound variable analysis, strength reduction, dead code elimination and symbolic constant propagation. The approach can be applied to any program transformation or optimization problem that uses properties and value ranges of program names. Symbolic analysis can be used on any transformational system or optimization problem that relies on compile-time information about program variables. This covers the majority of, if not all optimization and parallelization techniques. The book makes a compelling case for the potential of symbolic analysis, applying it for the first time - and with remarkable results - to a number of classical optimization problems: loop scheduling, static timing or size analysis, and dependence analysis. It demonstrates how symbolic analysis can solve these problems faster and more accurately than existing hybrid techniques.
This book constitutes the thoroughly refereed post-conference proceedings of the 27th International Workshop on Languages and Compilers for Parallel Computing, LCPC 2014, held in Hillsboro, OR, USA, in September 2014. The 25 revised full papers were carefully reviewed and selected from 39 submissions. The papers are organized in topical sections on accelerator programming; algorithms for parallelism; compilers; debugging; vectorization.
Abstract: "The notion of dependence captures the most important properties of a program for efficient execution on parallel computers. The dependence structure of a program defines the necessary constraints of the order of execution of the program components, and provides sufficient information for the exploitation of the available parallelism. Static discovery and management of the dependence structure of programs saves a tremendous amount of execution time, and dynamic utilization of dependence information results in a significant performance gain on parallel computers. However, experiments with supercomputers indicate that existing multiprocessing environments are unable to deliver the desired performance over a wide range of real applications, mainly due to lack of precision of their dependence information. This calls for an effective compilation scheme capable of understanding the dependence structure of complicated application programs. This thesis describes a methodology for capturing and analyzing program properties that are essential in the effective detection and efficient exploitation of parallelism on parallel computers. Based on this methodology, a symbolic analysis framework is developed for the Parafrase-2 parallelizing compiler. This framework extends the scope of a variety of important program analysis problems, and solves them in a unified way. The attained solution space of these problems is much larger than that handled by existing compiler technology. Such a powerful approach is required for the effective compilation of a large class of application programs."
The articles in this volume are revised versions of the best papers presented at the Fifth Workshop on Languages and Compilers for Parallel Computing, held at Yale University, August 1992. The previous workshops in this series were held in Santa Clara (1991), Irvine (1990), Urbana (1989), and Ithaca (1988). As in previous years, a reasonable cross-section of some of the best work in the field is presented. The volume contains 35 papers, mostly by authors working in the U.S. or Canada but also by authors from Austria, Denmark, Israel, Italy, Japan and the U.K.
Compiling for parallelism is a longstanding topic of compiler research. This book describes the fundamental principles of compiling "regular" numerical programs for parallelism. We begin with an explanation of analyses that allow a compiler to understand the interaction of data reads and writes in different statements and loop iterations during program execution. These analyses include dependence analysis, use-def analysis and pointer analysis. Next, we describe how the results of these analyses are used to enable transformations that make loops more amenable to parallelization, and discuss transformations that expose parallelism to target shared memory multicore and vector processors. We then discuss some problems that arise when parallelizing programs for execution on distributed memory machines. Finally, we conclude with an overview of solving Diophantine equations and suggestions for further readings in the topics of this book to enable the interested reader to delve deeper into the field. Table of Contents: Introduction and overview / Dependence analysis, dependence graphs and alias analysis / Program parallelization / Transformations to modify and eliminate dependences / Transformation of iterative and recursive constructs / Compiling for distributed memory machines / Solving Diophantine equations / A guide to further reading
This book constitutes the thoroughly refereed post-proceedings of the 19th International Workshop on Languages and Compilers for Parallel Computing, LCPC 2006, held in New Orleans, LA, USA in November 2006. The 24 revised full papers presented together with two keynote talks cover programming models, code generation, parallelism, compilation techniques, data structures, register allocation, and memory management.
This book presents the refereed proceedings of the Eighth Annual Workshop on Languages and Compilers for Parallel Computing, held in Columbus, Ohio in August 1995. The 38 full revised papers presented were carefully selected for inclusion in the proceedings and reflect the state of the art of research and advanced applications in parallel languages, restructuring compilers, and runtime systems. The papers are organized in sections on fine-grain parallelism, interprocedural analysis, program analysis, Fortran 90 and HPF, loop parallelization for HPF compilers, tools and libraries, loop-level optimization, automatic data distribution, compiler models, irregular computation, object-oriented and functional parallelism.
This volume contains the papers presented at the 13th International Workshop on Languages and Compilers for Parallel Computing. It also contains extended abstracts of submissions that were accepted as posters. The workshop was held at the IBM T. J. Watson Research Center in Yorktown Heights, New York. As in previous years, the workshop focused on issues in optimizing compilers, languages, and software environments for high performance computing. This continues a trend in which languages, compilers, and software environments for high performance computing, and not strictly parallel computing, has been the organizing topic. As in past years, participants came from Asia, North America, and Europe. This workshop re?ected the work of many people. In particular, the members of the steering committee, David Padua, Alex Nicolau, Utpal Banerjee, and David Gelernter, have been instrumental in maintaining the focus and quality of the workshop since it was ?rst held in 1988 in Urbana-Champaign. The assistance of the other members of the program committee – Larry Carter, Sid Chatterjee, Jeanne Ferrante, Jans Prins, Bill Pugh, and Chau-wen Tseng – was crucial. The infrastructure at the IBM T. J. Watson Research Center provided trouble-free logistical support. The IBM T. J. Watson Research Center also provided ?nancial support by underwriting much of the expense of the workshop. Appreciation must also be extended to Marc Snir and Pratap Pattnaik of the IBM T. J. Watson Research Center for their support.