Download Free Symbolic Logic And Logic Processing Book in PDF and EPUB Free Download. You can read online Symbolic Logic And Logic Processing and write the review.

Brimming with visual examples of concepts, derivation rules, and proof strategies, this introductory text is ideal for students with no previous experience in logic. Symbolic Logic: Syntax, Semantics, and Proof introduces students to the fundamental concepts, techniques, and topics involved in deductive reasoning. Agler guides students through the basics of symbolic logic by explaining the essentials of two classical systems, propositional and predicate logic. Students will learn translation both from formal language into English and from English into formal language; how to use truth trees and truth tables to test propositions for logical properties; and how to construct and strategically use derivation rules in proofs. This text makes this often confounding topic much more accessible with step-by-step example proofs, chapter glossaries of key terms, hundreds of homework problems and solutions for practice, and suggested further readings.
Famous classic has introduced countless readers to symbolic logic with its thorough and precise exposition. Starts with simple symbols and conventions and concludes with the Boole-Schroeder and Russell-Whitehead systems. No special knowledge of mathematics necessary. "One of the clearest and simplest introductions to a subject which is very much alive." — Mathematics Gazette.
Clear, comprehensive, and rigorous treatment develops the subject from elementary concepts to the construction and analysis of relatively complex logical languages. Hundreds of problems, examples, and exercises. 1958 edition.
This volume offers a serious study of the fundamentals of symbolic logic that will neither frustrate nor bore the reader. The emphasis is on developing the students grasp of standard techniques and concepts rather than on achieving a high degree of sophistication. Coverage embraces all of the standard topics in sentential and quantificational logic, including multiple quantification, relations, and identity. Semantic and deductive topics are carefully distinguished, and appendices include an optional discussion of metatheory for sentential logic and truth trees.
Formal logic provides us with a powerful set of techniques for criticizing some arguments and showing others to be valid. These techniques are relevant to all of us with an interest in being skilful and accurate reasoners. In this highly accessible book, Peter Smith presents a guide to the fundamental aims and basic elements of formal logic. He introduces the reader to the languages of propositional and predicate logic, and then develops formal systems for evaluating arguments translated into these languages, concentrating on the easily comprehensible 'tree' method. His discussion is richly illustrated with worked examples and exercises. A distinctive feature is that, alongside the formal work, there is illuminating philosophical commentary. This book will make an ideal text for a first logic course, and will provide a firm basis for further work in formal and philosophical logic.
Designed for a first, college-level course in Symbolic Logic, in class or online. Covers Sentential Logic, Natural Deduction, Truth Trees, Predicate Logic and Quantifier Logic.
This volume explores advances in information processing by describing a number of research approaches in symbolic computationalism and neural networks.
This text does not presuppose any technical background in math or logic. The first seven chapters cover all the basic components of a first course in symbolic logic, including truth tables, rules for devising formal proofs of validity, multiple quantifiers, properties of relations, enthymemes, and identity. (One exception is that truth trees are not discussed.) The five operator symbols used are: (.) and, (v) or, ( ) not, and also if-then, represented by the sideways U and material equivalence represented by the triple line. There are also four chapters which can be studied without symbolic logic background. Chapter 8 is a study of 7 immediate inferences in Aristotelian logic using A, E, I, O type statements with a detailed proof concerning what existential assumptions are involved. Chapter 9 is a study of classic Boolean syllogism using Venn diagrams to show the validity or invalidity of syllogisms. Chapter 10 is a study of the type of probability problems that are deductive (example: having 2 aces in 5 cards drawn from a randomized deck of cards). Chapter 11 is a study of the types of problems that are often found on standardized tests where certain data are given, and then multiple-choice questions are given where the single correct answer is determined by the data. In the symbolic logic chapters, it is shown many times how putting English statements into symbolic notation reveals the complexity (and sometimes ambiguity) of natural language. Many examples are given of the usage of logic in everyday life, with statements to translate taken from musicals, legal documents, federal tax instructions, etc. Several sections involve arguments given in English, which must be translated into symbolic notation before proof of validity is given. Chapter 7 ends with a careful presentation of Richard's Paradox, challenging those who dismiss the problem because it is not strictly mathematical. The conclusion of this chapter is the most controversial part of the text. Richard's paradox is used to construct a valid symbolic logic proof that Cantor's procedure does not prove there are nondenumerable sets, with a challenge to the reader to identify and prove which premise of the argument is false. There are several uncommon features of the text. For example, there is a section where it is shown how the rules of logic are used in solving Sudoku puzzles. Another section challenges students to devise arguments (premises and conclusion) that can be solved in a certain number of steps (say 3) only by using a certain 3 rules, one time each (for example, Modus Ponens, Simplification, and Conjunction). In proofs of invalidity, if there are 10 simple statements (for example), there are 1024 possible combinations of truth values that the 10 statements can have. But the premises and conclusions are set up so that only 1 of these combinations will make all the premises true and the conclusion false - and this 1 way can be found by forced truth-value assignments, with no need to take options. Another unusual section of the text defines the five operator symbols as relations (for example, Cxy = x conjuncted with y is true), and then statements about the operators are given to determine whether the statements are true or false. To aid in deciding what sections to cover in a given course or time frame, certain sections are labeled "optional" as an indication that understanding these sections is not presupposed by later sections in the text. Although there are a ton of problems with answers in the text, any teacher using this text for a course can receive free of charge an answer book giving answers to all the problems not answered in the text, plus a few cases of additional problems not given in the text, also with answers. Send your request to [email protected], and you will be sent an answer key using your address at the school where you teach.