Download Free Symbolic Dependence Analysis For High Performance Parallelizing Compilers Book in PDF and EPUB Free Download. You can read online Symbolic Dependence Analysis For High Performance Parallelizing Compilers and write the review.

In Symbolic Analysis for Parallelizing Compilers the author presents an excellent demonstration of the effectiveness of symbolic analysis in tackling important optimization problems, some of which inhibit loop parallelization. The framework that Haghighat presents has proved extremely successful in induction and wraparound variable analysis, strength reduction, dead code elimination and symbolic constant propagation. The approach can be applied to any program transformation or optimization problem that uses properties and value ranges of program names. Symbolic analysis can be used on any transformational system or optimization problem that relies on compile-time information about program variables. This covers the majority of, if not all optimization and parallelization techniques. The book makes a compelling case for the potential of symbolic analysis, applying it for the first time - and with remarkable results - to a number of classical optimization problems: loop scheduling, static timing or size analysis, and dependence analysis. It demonstrates how symbolic analysis can solve these problems faster and more accurately than existing hybrid techniques.
The objective of program analysis is to automatically determine the p- perties of a program. Tools of software development, such as compilers, p- formance estimators, debuggers, reverse-engineering tools, program veri?- tion/testing/proving systems, program comprehension systems, and program specializationtoolsarelargelydependentonprogramanalysis. Advancedp- gram analysis can: help to ?nd program errors; detect and tune performan- critical code regions; ensure assumed constraints on data are not violated; tailor a generic program to suit a speci?c application; reverse-engineer so- ware modules, etc. A prominent program analysis technique is symbolic a- lysis, which has attracted substantial attention for many years as it is not dependent on executing a program to examine the semantics of a program, and it can yield very elegant formulations of many analyses. Moreover, the complexity of symbolic analysis can be largely independent of the input data size of a program and of the size of the machine on which the program is being executed. In this book we present novel symbolic control and data ?ow repres- tation techniques as well as symbolic techniques and algorithms to analyze and optimize programs. Program contexts which de?ne a new symbolic - scription of program semantics for control and data ?ow analysis are at the center of our approach. We have solved a number of problems encountered in program analysis by using program contexts. Our solution methods are e?cient, versatile, uni?ed, and more general (they cope with regular and irregular codes) than most existing methods.
This set of technical books contains all the information presented at the 1995 International Conference on Parallel Processing. This conference, held August 14 - 18, featured over 100 lectures from more than 300 contributors, and included three panel sessions and three keynote addresses. The international authorship includes experts from around the globe, from Texas to Tokyo, from Leiden to London. Compiled by faculty at the University of Illinois and sponsored by Penn State University, these Proceedings are a comprehensive look at all that's new in the field of parallel processing.
This book presents the refereed proceedings of the Eighth Annual Workshop on Languages and Compilers for Parallel Computing, held in Columbus, Ohio in August 1995. The 38 full revised papers presented were carefully selected for inclusion in the proceedings and reflect the state of the art of research and advanced applications in parallel languages, restructuring compilers, and runtime systems. The papers are organized in sections on fine-grain parallelism, interprocedural analysis, program analysis, Fortran 90 and HPF, loop parallelization for HPF compilers, tools and libraries, loop-level optimization, automatic data distribution, compiler models, irregular computation, object-oriented and functional parallelism.
This volume presents revised versions of the 32 papers accepted for the Seventh Annual Workshop on Languages and Compilers for Parallel Computing, held in Ithaca, NY in August 1994. The 32 papers presented report on the leading research activities in languages and compilers for parallel computing and thus reflect the state of the art in the field. The volume is organized in sections on fine-grain parallelism, align- ment and distribution, postlinear loop transformation, parallel structures, program analysis, computer communication, automatic parallelization, languages for parallelism, scheduling and program optimization, and program evaluation.
This book contains papers selected for presentation at the Sixth Annual Workshop on Languages and Compilers for Parallel Computing. The workshop washosted by the Oregon Graduate Institute of Science and Technology. All the major research efforts in parallel languages and compilers are represented in this workshop series. The 36 papers in the volume aregrouped under nine headings: dynamic data structures, parallel languages, High Performance Fortran, loop transformation, logic and dataflow language implementations, fine grain parallelism, scalar analysis, parallelizing compilers, and analysis of parallel programs. The book represents a valuable snapshot of the state of research in the field in 1993.
This book constitutes the thoroughly refereed post-proceedings of the 15th International Workshop on Languages and Compilers for Parallel Processing, LCPC 2002, held in College Park, MD, USA in July 2002. The 26 revised full papers presented were carefully selected during two rounds of reviewing and improvement from 32 submissions. All current issues in parallel processing are addressed, in particular memory-constrained computation, compiler optimization, performance studies, high-level languages, programming language consistency models, dynamic parallelization, parallelization of data mining algorithms, parallelizing compilers, garbage collection algorithms, and evaluation of iterative compilation.
Automatic transformation of a sequential program into a parallel form is a subject that presents a great intellectual challenge and promises a great practical award. There is a tremendous investment in existing sequential programs, and scientists and engineers continue to write their application programs in sequential languages (primarily in Fortran). The demand for higher speedups increases. The job of a restructuring compiler is to discover the dependence structure and the characteristics of the given machine. Much attention has been focused on the Fortran do loop. This is where one expects to find major chunks of computation that need to be performed repeatedly for different values of the index variable. Many loop transformations have been designed over the years, and several of them can be found in any parallelizing compiler currently in use in industry or at a university research facility. The book series on KappaLoop Transformations for Restructuring Compilerskappa provides a rigorous theory of loop transformations and dependence analysis. We want to develop the transformations in a consistent mathematical framework using objects like directed graphs, matrices, and linear equations. Then, the algorithms that implement the transformations can be precisely described in terms of certain abstract mathematical algorithms. The first volume, Loop Transformations for Restructuring Compilers: The Foundations, provided the general mathematical background needed for loop transformations (including those basic mathematical algorithms), discussed data dependence, and introduced the major transformations. The current volume, Loop Parallelization, builds a detailed theory of iteration-level loop transformations based on the material developed in the previous book.
Proceedings -- Parallel Computing.
This book constitutes the refereed proceedings of the 16th International Workshop on Power and Timing Modeling, Optimization and Simulation, PATMOS 2006. The book presents 41 revised full papers and 23 revised poster papers together with 4 key notes and 3 industrial abstracts. Topical sections include high-level design, power estimation and modeling memory and register files, low-power digital circuits, busses and interconnects, low-power techniques, applications and SoC design, modeling, and more.