Download Free Symbolic Analysis Techniques For Effective Automatic Parallelization Book in PDF and EPUB Free Download. You can read online Symbolic Analysis Techniques For Effective Automatic Parallelization and write the review.

In Symbolic Analysis for Parallelizing Compilers the author presents an excellent demonstration of the effectiveness of symbolic analysis in tackling important optimization problems, some of which inhibit loop parallelization. The framework that Haghighat presents has proved extremely successful in induction and wraparound variable analysis, strength reduction, dead code elimination and symbolic constant propagation. The approach can be applied to any program transformation or optimization problem that uses properties and value ranges of program names. Symbolic analysis can be used on any transformational system or optimization problem that relies on compile-time information about program variables. This covers the majority of, if not all optimization and parallelization techniques. The book makes a compelling case for the potential of symbolic analysis, applying it for the first time - and with remarkable results - to a number of classical optimization problems: loop scheduling, static timing or size analysis, and dependence analysis. It demonstrates how symbolic analysis can solve these problems faster and more accurately than existing hybrid techniques.
The objective of program analysis is to automatically determine the p- perties of a program. Tools of software development, such as compilers, p- formance estimators, debuggers, reverse-engineering tools, program veri?- tion/testing/proving systems, program comprehension systems, and program specializationtoolsarelargelydependentonprogramanalysis. Advancedp- gram analysis can: help to ?nd program errors; detect and tune performan- critical code regions; ensure assumed constraints on data are not violated; tailor a generic program to suit a speci?c application; reverse-engineer so- ware modules, etc. A prominent program analysis technique is symbolic a- lysis, which has attracted substantial attention for many years as it is not dependent on executing a program to examine the semantics of a program, and it can yield very elegant formulations of many analyses. Moreover, the complexity of symbolic analysis can be largely independent of the input data size of a program and of the size of the machine on which the program is being executed. In this book we present novel symbolic control and data ?ow repres- tation techniques as well as symbolic techniques and algorithms to analyze and optimize programs. Program contexts which de?ne a new symbolic - scription of program semantics for control and data ?ow analysis are at the center of our approach. We have solved a number of problems encountered in program analysis by using program contexts. Our solution methods are e?cient, versatile, uni?ed, and more general (they cope with regular and irregular codes) than most existing methods.
This volume contains the papers presented at the 13th International Workshop on Languages and Compilers for Parallel Computing. It also contains extended abstracts of submissions that were accepted as posters. The workshop was held at the IBM T. J. Watson Research Center in Yorktown Heights, New York. As in previous years, the workshop focused on issues in optimizing compilers, languages, and software environments for high performance computing. This continues a trend in which languages, compilers, and software environments for high performance computing, and not strictly parallel computing, has been the organizing topic. As in past years, participants came from Asia, North America, and Europe. This workshop re?ected the work of many people. In particular, the members of the steering committee, David Padua, Alex Nicolau, Utpal Banerjee, and David Gelernter, have been instrumental in maintaining the focus and quality of the workshop since it was ?rst held in 1988 in Urbana-Champaign. The assistance of the other members of the program committee – Larry Carter, Sid Chatterjee, Jeanne Ferrante, Jans Prins, Bill Pugh, and Chau-wen Tseng – was crucial. The infrastructure at the IBM T. J. Watson Research Center provided trouble-free logistical support. The IBM T. J. Watson Research Center also provided ?nancial support by underwriting much of the expense of the workshop. Appreciation must also be extended to Marc Snir and Pratap Pattnaik of the IBM T. J. Watson Research Center for their support.
In August 1999, the Twelfth Workshop on Languages and Compilers for P- allel Computing (LCPC) was hosted by the Hierarchical Tiling Research group from the Computer Science and Engineering Department at the University of California San Diego (UCSD). The workshop is an annual international forum for leading research groups to present their current research activities and the latest results. It has also been a place for researchers and practitioners to - teract closely and exchange ideas about future directions. Among the topics of interest to the workshop are language features, code generation, debugging, - timization, communication and distributed shared memory libraries, distributed object systems, resource management systems, integration of compiler and r- time systems, irregular and dynamic applications, and performance evaluation. In 1999, the workshop was held at the International Relations/Paci c Studies Auditorium and the San Diego Supercomputer Center at UCSD. Seventy-seven researchers from Australia, England, France, Germany, Korea, Spain, and the United States attended the workshop, an increase of over 50% from 1998.
Over the past several decades, applications permeated by advances in digital signal processing have undergone unprecedented growth in capabilities. The editors and authors of High Performance Embedded Computing Handbook: A Systems Perspective have been significant contributors to this field, and the principles and techniques presented in the handbook are reinforced by examples drawn from their work. The chapters cover system components found in today’s HPEC systems by addressing design trade-offs, implementation options, and techniques of the trade, then solidifying the concepts with specific HPEC system examples. This approach provides a more valuable learning tool, Because readers learn about these subject areas through factual implementation cases drawn from the contributing authors’ own experiences. Discussions include: Key subsystems and components Computational characteristics of high performance embedded algorithms and applications Front-end real-time processor technologies such as analog-to-digital conversion, application-specific integrated circuits, field programmable gate arrays, and intellectual property–based design Programmable HPEC systems technology, including interconnection fabrics, parallel and distributed processing, performance metrics and software architecture, and automatic code parallelization and optimization Examples of complex HPEC systems representative of actual prototype developments Application examples, including radar, communications, electro-optical, and sonar applications The handbook is organized around a canonical framework that helps readers navigate through the chapters, and it concludes with a discussion of future trends in HPEC systems. The material is covered at a level suitable for practicing engineers and HPEC computational practitioners and is easily adaptable to their own implementation requirements.
ETAPS’99 is the second instance of the EuropeanJoint Conferences on T- ory and Practice of Software. ETAPS is an annual federated conference that was established in 1998 by combining a number of existing and new conferences. This year it comprises ?ve conferences (FOSSACS, FASE, ESOP, CC, TACAS), four satellite workshops (CMCS, AS, WAGA, CoFI), seven invited lectures, two invited tutorials, and six contributed tutorials. The events that comprise ETAPS address various aspects of the system - velopment process, including speci?cation, design, implementation, analysis and improvement. The languages, methodologies and tools which support these - tivities are all well within its scope. Di?erent blends of theory and practice are represented, with an inclination towards theory with a practical motivation on one hand and soundly-based practice on the other. Many of the issues involved in software design apply to systems in general, including hardware systems, and the emphasis on software is not intended to be exclusive.
This book constitutes the strictly refereed post-workshop proceedings of the 4th International Workshop on Languages, Compilers, and Run-Time Systems for Scalable Computing, LCR '98, held in Pittsburgh, PA, USA in May 1998. The 23 revised full papers presented were carefully selected from a total of 47 submissions; also included are nine refereed short papers. All current issues of developing software systems for parallel and distributed computers are covered, in particular irregular applications, automatic parallelization, run-time parallelization, load balancing, message-passing systems, parallelizing compilers, shared memory systems, client server applications, etc.
The articles in this volume are revised versions of the best papers presented at the Fifth Workshop on Languages and Compilers for Parallel Computing, held at Yale University, August 1992. The previous workshops in this series were held in Santa Clara (1991), Irvine (1990), Urbana (1989), and Ithaca (1988). As in previous years, a reasonable cross-section of some of the best work in the field is presented. The volume contains 35 papers, mostly by authors working in the U.S. or Canada but also by authors from Austria, Denmark, Israel, Italy, Japan and the U.K.