Download Free Switched Capacitor Techniques For High Accuracy Filter And Adc Design Book in PDF and EPUB Free Download. You can read online Switched Capacitor Techniques For High Accuracy Filter And Adc Design and write the review.

This book proposes alternative switched capacitor techniques which allow the achievement of higher intrinsic analogue functional accuracy than previously possible in such application areas as analogue filter and ADC design. The validity of the concepts developed and analyzed in Switched-Capacitor Techniques for High-Accuracy Filter and ADC Design has been demonstrated in practice with the design of CMOS SC bandpass filters and algorithmic ADC stages.
This book proposes alternative switched capacitor techniques which allow the achievement of higher intrinsic analogue functional accuracy than previously possible in such application areas as analogue filter and ADC design. The validity of the concepts developed and analyzed in Switched-Capacitor Techniques for High-Accuracy Filter and ADC Design has been demonstrated in practice with the design of CMOS SC bandpass filters and algorithmic ADC stages.
This book proposes alternative switched capacitor techniques which allow the achievement of higher intrinsic analogue functional accuracy than previously possible in such application areas as analogue filter and ADC design. The validity of the concepts developed and analyzed in Switched-Capacitor Techniques for High-Accuracy Filter and ADC Design has been demonstrated in practice with the design of CMOS SC bandpass filters and algorithmic ADC stages.
This book discusses the design of switched-capacitor filters in deep-submicron CMOS technologies. The authors describe several topologies for switched-capacitor filter circuits that do not require high-gain high-bandwidth amplifiers. Readers will also learn two analysis methodologies that can be implemented efficiently in software and integrated into optimization environments for the automation of design for switched-capacitor filters. Although the optimization examples discussed utilize low gain amplifiers, the demonstrated methodologies can also be used for conventional, high-gain high-bandwidth amplifiers.
This book describes the design of switched-capacitor filter circuits using low gain amplifiers and demonstrates some techniques that can minimize the effects of parasitic capacitances during the design phase. Focus is given in the design of low-pass and band-pass SC filters, and how higher order filters can be achieved using cascaded biquadratic filter sections. The authors also describe a low voltage implementation of a low-pass SC filter.
This book helps engineers to grasp fundamental theories and design principles by presenting physical and intuitive explanations of switched-capacitor circuits. Numerous circuit examples are discussed and the author emphasizes the most important and fundamental principles involved in implementing state-of-the-art switched-capacitor circuits for analog signal processing and power management applications. Throughout the book, the author presents numerous step-by-step tutorials and gives practical design examples.While some quantitative analysis is necessary to understand underlying concepts, tedious mathematical equations and formal proofs are avoided. An intuitive appreciation for switched-capacitor circuits is achieved.Much of the existing information on contemporary switched-capacitor circuit applications is in the form of applications notes and data sheets for various switched-capacitor ICs. This book compiles such information in a single volume and coherently organizes and structures it.The author has his own website at www.mingliangliu.com * Step-by-step tutorials which emphasize the most fundamental principals of switched-capacitor circuits * Few tedious mathematical equations * The first easy-to-understand compilation on this subject--most information available is not very cohesive
Multirate Switched-Capacitor Circuits for 2-D Signal Processing introduces the concepts of analog multirate signal processing for the efficient implementation of two-dimensional (2-D) filtering in integrated circuit form, particularly from the viewpoints of silicon area and power dissipation. New 2-D switched-capacitor (SC) networks and design techniques are presented, both with finite impulse response (FIR) and infinite impulse response (IIR) with separable denominator polynomial, which offer simpler and more systematic synthesis procedures than currently available design techniques for 2-D analog filters. Since they are in the discrete-time domain, the book can be also referred to the digital multirate signal processing. A 2-D SC image processor that realizes both (2 x 2)nd-order Butterworth lowpass and highpass filtering functions for video image signals was realized as a prototype integrated circuit implemented in 1.0-mum CMOS technology. The experimental characterization of this prototype chip demonstrated the feasibility of real-time analog multirate 2-D image processing with equivalent 8-bits accuracy, using only 2.5 x 3.0 mm2 of silicon area and dissipating as little as 85 mW at 5V supply and 18 MHz sampling rate. This indicates that for moderate accuracy and low to moderate complexity of the filtering function, a fully multirate analog implementation has a potential to achieve a more competitive implementation than an alternative digital VLSI implementation. However, for high accuracy and/or higher processing complexity, not only the relative overhead cost of the front-end and back-end converters will diminish but also the implementation of the processing core in digital VLSI will benefit more of technology scaling to achieve higher density of integration. Multirate Switched-Capacitor Circuits for 2-D Signal Processing is essential reading for practicing analog design engineers and researchers in the field. It is also suitable as a text for an advanced course on the subject.
This text brings together basic theory and recent research findings in the new area of switched capacitor filters. Emphasizing the miniaturization and design of filters in silicon chip technology, it derives and evaluates SC filter configurations.