Download Free Swarm Intelligence Based Adaptive Signal System Book in PDF and EPUB Free Download. You can read online Swarm Intelligence Based Adaptive Signal System and write the review.

With over 300,000 traffic signals in the United States, it is important to everyone that those traffic signals operate optimally. Unfortunately, according to the Institute of Transportation Engineers over 75% of traffic signal control systems are in need of retiming or upgrade. Agencies and practitioners responsible for these signals face significant budgeting and procedural challenges to maintain and upgrade their systems. Transportation professionals have traditionally lacked accessible and effective tools to identify when and where the greatest benefits may be generated through retiming and system feature selection. They have also lacked methods and tools to identify, select and defend choices of new traffic signal control systems. This is especially true for adaptive traffic signal control systems which are generally more expensive and whose adaptive algorithms are proprietary, invalidating many traditional analysis methods. To address these challenges, a new theoretical framework including queuing and traffic signal control models has been developed in this study to predict the impacts of signal control technology on a given corridor. This framework has been implemented in the STAR Lab Toolkit for Analysis of Traffic and Intersection Control Systems (STATICS) that uses an underlying queuing model interacting with simulated traffic signal control logic to develop traffic measures of effectiveness under different traffic signal control strategies and settings. The STATICS toolkit has been employed by the Oregon Department of Transportation and several other transportation agencies to analyze their corridors and select advanced traffic signal control systems. Furthermore, a new cost-effective adaptive traffic signal control system called the Swarm-Intelligence Based Adaptive Signal System (SIBASS) is proposed to address situations where optimum optimization strategies change with traffic conditions. Compared to the existing adaptive signal control systems, SIBASS carries an important advantage that makes it robust under communication difficulties. It operates at the individual intersection level in a flat hierarchy that does not use a central controller. Instead, each intersection self-assigns a role based on current traffic conditions and the current roles of neighboring intersections. Each role uses different optimization goals, allowing SIBASS to change intersection optimization criteria based on the current role chosen by that intersection. By designing cooperative features into SIBASS it is possible to create corridor coordination and optimization. This is accomplished using the characteristics of the swarm rather than external imposition to create order. SIBASS is evaluated via simulation under varied traffic conditions. SIBASS consistently outperformed the existing systems tested in this study. On average, SIBASS reduced system average per vehicle delay by approximately 3.5 seconds and system average queue lengths by 20 feet in the tested scenarios. New approaches to tailoring traffic signal control optimization strategies to current traffic conditions and desired operational goals are enabled by SIBASS. Combined, STATICS and SIBASS offer a solid basis upon which to build future tools and methods to analyze traffic signal control systems. Future STATICS analytical modules may include estimating environmental performance and costs as well as improvements to pedestrian modeling and mobility analysis. Environmental and pedestrian considerations also present opportunities for improvement of SIBASS. New optimization roles can be created for SIBASS to address environmental and pedestrian optimization issues.
Roughly half of all electricity generated is consumed in motors, and recent efforts to apply artificial intelligence (AI) to improving electric motors are receiving attention worldwide. At present two industrial drives incorporate some form of AI. This book is the first comprehensive discussion of AI applications to electrical machines and drives. It looks at d.c. drives, induction motor drives, synchronous motor drives, switched reluctance motor drives, and sensorless drives. It combines simple explanations of AI-based systems with detailed and unified mathematical and physical treatments, and it includes numerous worked examples, simulations, and experimental results.
This book constitutes the proceedings of the 11th International Conference on Advances in Swarm Intelligence, ICSI 2020, held in July 2020 in Belgrade, Serbia. Due to the COVID-19 pandemic the conference was held virtually. The 63 papers included in this volume were carefully reviewed and selected from 127 submissions. The papers are organized in 12 cohesive topical sections as follows: Swarm intelligence and nature-inspired computing; swarm-based computing algorithms for optimization; particle swarm optimization; ant colony optimization; brain storm optimization algorithm; bacterial foraging optimization; genetic algorithm and evolutionary computation; multi-objective optimization; machine learning; data mining; multi-agent system and robotic swarm, and other applications.
This book gathers outstanding research papers presented in the 2nd International Conference on Artificial Intelligence: Advances and Application (ICAIAA 2021), held in Poornima College of Engineering, Jaipur, India during 27-28 March 2021. This book covers research works carried out by various students such as bachelor, master and doctoral scholars, faculty and industry persons in the area of artificial intelligence, machine learning, deep learning applications in healthcare, agriculture, business, security, etc. It will also cover research in core concepts of computer networks, intelligent system design and deployment, real time systems, WSN, sensors and sensor nodes, SDN, NFV, etc.
The LNCS series reports state-of-the-art results in computer science research, development, and education, at a high level and in both printed and electronic form. Enjoying tight cooperation with the R&D community, with numerous individuals, as well as with prestigious organizations and societies, LNCS has grown into the most comprehensive computer science research forum available. The scope of LNCS, including its subseries LNAI and LNBI, spans the whole range of computer science and information technology including interdisciplinary topics in a variety of application fields. The type of material published traditionally includes More recently, several color-cover sublines have been added featuring, beyond a collection of papers, various added-value components; these sublines include In paallel to the printed book, each new volume is published electronically in LNCS Online.
This book constitutes the thoroughly refereed post-conference proceedings of the Third International Conference on Industrial Networks and Intelligent Systems, INISCOM 2017, held in Ho chi Minh City, Vietnam, in September 2017. The 31 revised full papers carefully reviewed and selected from 45 submissions. The papers cover topics on telecommunications systems and networks, intelligent systems, industrial networks, and applications, computer science, security and privacy, hardware and software design.
This book constitutes the thoroughly refereed post-conference proceedings of the 1st International Conference on Swarm Intelligence Based Optimization, ICSIBO 2014, held in Mulhouse, France, in May 2014. The 20 full papers presented were carefully reviewed and selected from 48 submissions. Topics of interest presented and discussed in the conference focuses on the theoretical progress of swarm intelligence metaheuristics and their applications in areas such as: theoretical advances of swarm intelligence metaheuristics, combinatorial, discrete, binary, constrained, multi-objective, multi-modal, dynamic, noisy, and large-scale optimization, artificial immune systems, particle swarms, ant colony, bacterial foraging, artificial bees, fireflies algorithm, hybridization of algorithms, parallel/distributed computing, machine learning, data mining, data clustering, decision making and multi-agent systems based on swarm intelligence principles, adaptation and applications of swarm intelligence principles to real world problems in various domains.
"Swarm intelligence is one of the fastest-growing sub-fields of artificial intelligence and soft computing. This field includes multiple optimization algorithms to solve NP-hard problems for which conventional methods are not effective. It inspires researchers in engineering sciences to learn theories from nature and incorporate them. Swarm Intelligence: Foundation, Principles, and Engineering Applications provides a comprehensive review of new swarm intelligence techniques and offers practical implementation of Particle Swarm Optimization (PSO) with MATLAB code. The book discusses the statistical analysis of swarm optimization techniques so that researchers can analyze their experiment design. It also includes algorithms in social sectors, oil and gas industries, and recent research findings of new optimization algorithms in the field of engineering describing the implementation in Machine Learning. This book is written for students of engineering, research scientists, and academicians involved in the engineering sciences"--
This book discusses systematic designs of stable adaptive fuzzy logic controllers employing hybridizations of Lyapunov strategy-based approaches/H∞ theory-based approaches and contemporary stochastic optimization techniques. The text demonstrates how candidate stochastic optimization techniques like Particle swarm optimization (PSO), harmony search (HS) algorithms, covariance matrix adaptation (CMA) etc. can be utilized in conjunction with the Lyapunov theory/H∞ theory to develop such hybrid control strategies. The goal of developing a series of such hybridization processes is to combine the strengths of both Lyapunov theory/H∞ theory-based local search methods and stochastic optimization-based global search methods, so as to attain superior control algorithms that can simultaneously achieve desired asymptotic performance and provide improved transient responses. The book also demonstrates how these intelligent adaptive control algorithms can be effectively utilized in real-life applications such as in temperature control for air heater systems with transportation delay, vision-based navigation of mobile robots, intelligent control of robot manipulators etc.