Download Free Sustainable Wireless Network On Chip Architectures Book in PDF and EPUB Free Download. You can read online Sustainable Wireless Network On Chip Architectures and write the review.

Sustainable Wireless Network-on-Chip Architectures focuses on developing novel Dynamic Thermal Management (DTM) and Dynamic Voltage and Frequency Scaling (DVFS) algorithms that exploit the advantages inherent in WiNoC architectures. The methodologies proposed—combined with extensive experimental validation—collectively represent efforts to create a sustainable NoC architecture for future many-core chips. Current research trends show a necessary paradigm shift towards green and sustainable computing. As implementing massively parallel energy-efficient CPUs and reducing resource consumption become standard, and their speed and power continuously increase, energy issues become a significant concern. The need for promoting research in sustainable computing is imperative. As hundreds of cores are integrated in a single chip, designing effective packages for dissipating maximum heat is infeasible. Moreover, technology scaling is pushing the limits of affordable cooling, thereby requiring suitable design techniques to reduce peak temperatures. Addressing thermal concerns at different design stages is critical to the success of future generation systems. DTM and DVFS appear as solutions to avoid high spatial and temporal temperature variations among NoC components, and thereby mitigate local network hotspots. - Defines new complex, sustainable network-on-chip architectures to reduce network latency and energy - Develops topology-agnostic dynamic thermal management and dynamic voltage and frequency scaling techniques - Describes joint strategies for network- and core-level sustainability - Discusses novel algorithms that exploit the advantages inherent in Wireless Network-on-Chip architectures
This book provides comprehensive coverage of Network-on-Chip (NoC) security vulnerabilities and state-of-the-art countermeasures, with contributions from System-on-Chip (SoC) designers, academic researchers and hardware security experts. Readers will gain a clear understanding of the existing security solutions for on-chip communication architectures and how they can be utilized effectively to design secure and trustworthy systems.
Since its first volume in 1960, Advances in Computers has presented detailed coverage of innovations in computer hardware, software, theory, design, and applications. It has also provided contributors with a medium in which they can explore their subjects in greater depth and breadth than journal articles usually allow. As a result, many articles have become standard references that continue to be of sugnificant, lasting value in this rapidly expanding field. - In-depth surveys and tutorials on new computer technology - Well-known authors and researchers in the field - Extensive bibliographies with most chapters - Many of the volumes are devoted to single themes or subfields of computer science
This book features high-quality research papers presented at the 2nd International Conference on Computational Intelligence in Pattern Recognition (CIPR 2020), held at the Institute of Engineering and Management, Kolkata, West Bengal, India, on 4–5 January 2020. It includes practical development experiences in various areas of data analysis and pattern recognition, focusing on soft computing technologies, clustering and classification algorithms, rough set and fuzzy set theory, evolutionary computations, neural science and neural network systems, image processing, combinatorial pattern matching, social network analysis, audio and video data analysis, data mining in dynamic environments, bioinformatics, hybrid computing, big data analytics and deep learning. It also provides innovative solutions to the challenges in these areas and discusses recent developments.
Today’s highly parameterized large-scale distributed computing systems may be composed of a large number of various components (computers, databases, etc) and must provide a wide range of services. The users of such systems, located at different (geographical or managerial) network cluster may have a limited access to the system’s services and resources, and different, often conflicting, expectations and requirements. Moreover, the information and data processed in such dynamic environments may be incomplete, imprecise, fragmentary, and overloading. All of the above mentioned issues require some intelligent scalable methodologies for the management of the whole complex structure, which unfortunately may increase the energy consumption of such systems. An optimal energy utilization has reached to a point that many information technology (IT) managers and corporate executives are all up in arms to identify scalable solution that can reduce electricity consumption (so that the total cost of operation is minimized) of their respective large-scale computing systems and simultaneously improve upon or maintain the current throughput of the system. This book in its eight chapters, addresses the fundamental issues related to the energy usage and the optimal low-cost system design in high performance ``green computing’’ systems. The recent evolutionary and general metaheuristic-based solutions for energy optimization in data processing, scheduling, resource allocation, and communication in modern computational grids, could and network computing are presented along with several important conventional technologies to cover the hot topics from the fundamental theory of the ‘’green computing’’ concept and to describe the basic architectures of systems. This book points out the potential application areas and provides detailed examples of application case studies in low-energy computational systems. The development trends and open research issues are also outlined. All of those technologies have formed the foundation for the green computing that we know of today.
This book features research papers presented at the 4th International Conference on Intelligent Sustainable Systems (ICISS 2021), held at SCAD College of Engineering and Technology, Tirunelveli, Tamil Nadu, India, during February 26–27, 2021. The book discusses the latest research works that discuss the tools, methodologies, practices, and applications of sustainable systems and computational intelligence methodologies. The book is beneficial for readers from both academia and industry.
Architecture of Network Systems explains the practice and methodologies that will allow you to solve a broad range of problems in system design, including problems related to security, quality of service, performance, manageability, and more. Leading researchers Dimitrios Serpanos and Tilman Wolf develop architectures for all network sub-systems, bridging the gap between operation and VLSI.This book provides comprehensive coverage of the technical aspects of network systems, including system-on-chip technologies, embedded protocol processing and high-performance, and low-power design. It develops a functional approach to network system architecture based on the OSI reference model, which is useful for practitioners at every level. It also covers both fundamentals and the latest developments in network systems architecture, including network-on-chip, network processors, algorithms for lookup and classification, and network systems for the next-generation Internet.The book is recommended for practicing engineers designing the architecture of network systems and graduate students in computer engineering and computer science studying network system design. - This is the first book to provide comprehensive coverage of the technical aspects of network systems, including processing systems, hardware technologies, memory managers, software routers, and more - Develops a systematic approach to network architectures, based on the OSI reference model, that is useful for practitioners at every level - Covers both the important basics and cutting-edge topics in network systems architecture, including Quality of Service and Security for mobile, real-time P2P services, Low-Power Requirements for Mobile Systems, and next generation Internet systems
Addresses the Challenges Associated with System-on-Chip Integration Network-on-Chip: The Next Generation of System-on-Chip Integration examines the current issues restricting chip-on-chip communication efficiency, and explores Network-on-chip (NoC), a promising alternative that equips designers with the capability to produce a scalable, reusable, and high-performance communication backbone by allowing for the integration of a large number of cores on a single system-on-chip (SoC). This book provides a basic overview of topics associated with NoC-based design: communication infrastructure design, communication methodology, evaluation framework, and mapping of applications onto NoC. It details the design and evaluation of different proposed NoC structures, low-power techniques, signal integrity and reliability issues, application mapping, testing, and future trends. Utilizing examples of chips that have been implemented in industry and academia, this text presents the full architectural design of components verified through implementation in industrial CAD tools. It describes NoC research and developments, incorporates theoretical proofs strengthening the analysis procedures, and includes algorithms used in NoC design and synthesis. In addition, it considers other upcoming NoC issues, such as low-power NoC design, signal integrity issues, NoC testing, reconfiguration, synthesis, and 3-D NoC design. This text comprises 12 chapters and covers: The evolution of NoC from SoC—its research and developmental challenges NoC protocols, elaborating flow control, available network topologies, routing mechanisms, fault tolerance, quality-of-service support, and the design of network interfaces The router design strategies followed in NoCs The evaluation mechanism of NoC architectures The application mapping strategies followed in NoCs Low-power design techniques specifically followed in NoCs The signal integrity and reliability issues of NoC The details of NoC testing strategies reported so far The problem of synthesizing application-specific NoCs Reconfigurable NoC design issues Direction of future research and development in the field of NoC Network-on-Chip: The Next Generation of System-on-Chip Integration covers the basic topics, technology, and future trends relevant to NoC-based design, and can be used by engineers, students, and researchers and other industry professionals interested in computer architecture, embedded systems, and parallel/distributed systems.
Implementing energy-efficient CPUs and peripherals as well as reducing resource consumption have become emerging trends in computing. As computers increase in speed and power, their energy issues become more and more prevalent. The need to develop and promote environmentally friendly computer technologies and systems has also come to the forefront
The role of Cities in driving global economies has been well covered, and their impact on the larger ecosystem is well documented. Resilient and Sustainable Cities: Research, Policy and Practice explores how cities can be transformed into sustainable fabrics, while leading to positive socio-economic change. The topics include urban policy and covers the challenges cities experienced during the pandemic and resulting urban responses from federal, state, and local levels. This includes a transdisciplinary perspective dwelling on the city narrative, including Resources, Economics, Politics, and others. Resilient and Sustainable Cities serves as a valuable resource for leaders and practitioners working in Urban Policy and academia, as well as students in urban planning, architecture, and policy undergraduate and graduate level programs. - Explores the impacts of COVID-19 on cities and its socio-economic impacts - Provides regenerative avenues for cities in a post-pandemic context - Introduces the concept of the "15-Minute City" - Underlines urban regenerative avenues, including financing needs, for cities in the global south