Download Free Sustainable Water Treatment Book in PDF and EPUB Free Download. You can read online Sustainable Water Treatment and write the review.

Sustainable Water Treatment: Engineering Solutions for a Variable Climate covers sustainable water and environmental engineering aspects relevant for the drainage and treatment of storm water and wastewater. The book explains the fundamental science and engineering principles for the student and professional market. Standard and novel design recommendations for sustainable technologies, such as constructed wetlands, sustainable drainage systems and sustainable flood retention basins are provided to account for the interests of professional engineers and environmental scientists. The book presents the latest research findings in wastewater treatment and runoff control that are ideal for academics and senior consultants. The book offers a challenging, diverse, holistic, multidisciplinary, experimental and modelling-orientated case study, covering topics such as natural wetlands, constructed treatment wetlands for pollution control, sustainable drainage systems managing diffuse pollution, specific applications, such as wetlands treating dye wastewater and ecological sanitation systems recycling treated waters for the irrigation of crops. - Explains the fundamental science and engineering principles behind each topic - Provides an easy-to-understand, descriptive overview of complex 'black box' drainage and treatment systems and general design issues involved - Includes a comprehensive analysis of asset performance, modelling of treatment processes, and an assessment of sustainability and economics
Sustainable Water and Wastewater Processing covers the 12 most current topics in the field of sustainable water processing, with emphasis given to water as a resource (quality, supply, distribution, and aquifer recharge). Topics covered include emerging sustainable technologies for potable and wastewater treatment, water reuse and recycling, advanced membrane processes, desalination technologies, integrated and hybrid technologies, process modeling, advanced oxidative and catalytic processes, environmentally, economically and socially sustainable technology for water treatment, industrial water treatment, reuse and recovery of materials, and emerging nanotechnology and biotechnology for water processing. Responding to the goals of sustainability requires the maximum utilization of all water resources, water processing with restricted energy costs and reduced greenhouse gas production. Following these trends, this book covers all the important aspects of sustainable water processing and support.
Many hydrological, geochemical, and biological processes associated with water reclamation and reuse are poorly understood. In particular, the occurrence and effects of trace organic and inorganic contaminants commonly found in reclaimed water necessitates careful analysis and treatment prior to safe reuse. Water Reclamation and Sustainability is a practical guide to the latest water reclamation, recycling, and reuse theory and practice. From water quality criteria and regulations to advanced techniques and implementation issues, this book offers scientists a toolkit for developing safe and successful reuse strategies. With a focus on specific contaminant removal techniques, this book comprehensively covers the full range of potential inorganic/organic contaminating compounds and highlights proven remediation methods. Socioeconomic implications related to current and future water shortages are also addressed, underscoring the many positive benefits of sustainable water resource management. - Offers pragmatic solutions to global water shortages - Provides an overview of the latest analytical techniques for water monitoring - Reviews current remediation efforts - Covers innovative technologies for green, gray, brown and black water reclamation and reuse
While the world’s population continues to grow, the availability of water remains constant. Facing the looming water crisis, society needs to tackle strategic management issues as an integrated part of the solution toward water sustainability. The first volume in the two-volume set Sustainable Water Management and Technologies offers readers a practical and comprehensive look at such key water management topics as water resource planning and governance, water infrastructure planning and adaption, proper regulations, and water scarcity and inequality. It discusses best management practices for water resource allocation, ground water protection, and water quality assurance, especially for rural, arid, and underdeveloped regions of the world. Timely topics such as drought, ecosystem sustainability, climate change, and water management for shale oil and gas development are presented. Discusses best practices for water resource allocation, ground water protection, and water quality assurance. Offers chapters on urban, rural, arid, and underdeveloped regions of the world. Describes timely topics such as drought, ecosystem sustainability, climate change, and water management for shale oil and gas development. Covers water resource planning and governance, water infrastructure planning and adaptation, proper regulations, and water scarcity and inequality Discusses water resource monitoring, efficiency, and quality management.
This book focuses on green and innovative wastewater treatment technologies that promote sustainability. It discusses a variety of biological, physical, and chemical treatment technologies. It covers biological processes for recovery of value-added products from wastewater and gives an overview of enzymatic hydrolysis and bioremediation of wastewater using immobilized enzyme and fungus. It offers a case study and future trends of wastewater treatment through membrane bioreactor technologies, describes advanced chemical-physical processes for recalcitrant pollutant, and emphasizes the use of low-cost materials and cost-effective treatment methods.
Emerging Membrane Technology for Sustainable Water Treatment provides the latest information on the impending crisis posed by water stress and poor sanitation, a timely issue that is one of the greatest human challenges of the 21st century. The book also discusses the use of membrane technology, a serious contender that can be used to confront the crisis on a global scale, along with its specific uses as a solution to this escalating problem. - Provides a unique source on membrane technology and its application for water treatment - Focuses on technologies designed for the treatment of seawater and brackish water - Highlights the most economically and environmentally friendly membrane technologies - Lists various technologies and emphasizes their link to renewable energy, energy efficiency, nanotechnology, reuse, and recycle
This is the only book that takes a zero-waste approach to propose 100% sustainable water purification techniques. Water is synonymous with life. This has been the case since pre-historic time to the modern era. For the first time, humanity faces a crisis that eclipses the energy crisis, which has often incapacitated the global economy. The Climate-Water-Food nexus epitomizes our current civilization that depends on energy as the driver. Many recognize this crisis as a product of fossil fuel production, which allegedly triggered climate change and the "climate change debate." Others predict the onslaught of "water wars" in the coming decades. As the world gears up to another lineup of empty promises and ensuing chaos, this book turns this crisis on its head and shows the source of the water crisis. The science behind the water cycle is described in clear language, without resorting to dogmatic assertions and spurious assumptions. The role of the sun, natural carbon dioxide (CO2) and water and the need to maintain natural processes free from artificial chemicals are discussed in detail. The book makes it clear how most of the currently used purification techniques violates the natural cycle involving sunlight, CO2 and water, and thus become unsustainable. A series of water purification techniques, as usable for drinking, agricultural and industrial applications are presented. The advantages of these techniques and their long-term sustainability are highlighted, with discussion on improvements in the future. Whether for the engineer or scientist working in the field or laboratory or the student, this is a must-have for any engineer, scientist, student, or policymaker.
Sustainable Biochar for Water and Wastewater Treatment addresses the worldwide water contamination and scarcity problem by presenting an innovative and cost-efficient solution. This book directly deals with the Sustainable Development Goal 6: Ensure availability and sustainable management of water and sanitation for all. Each chapter is authored by a respected expert in the field of water and wastewater treatment, with each chapter including case studies, worked examples, and exercises. As such, the book is the perfect introduction to the field and is multipurpose in that it can be used for teaching, learning, research, and practice. The book is invaluable for undergraduate level and above in water science, environmental sciences, soil science, material sciences and engineering, chemical sciences and engineering, and biological sciences. The book covers the various aspects of biochar requirements for use in adsorption science and technology. It includes vital information on this hot topic and provides a real solution to the global issues of water contamination and scarcity. - Presents case studies in each chapter, making this applicable for those who want to implement examples into their own work - Includes in each chapter example calculations with an exercise at the end of each chapter, making this a great teaching tool - Includes excel spreadsheets online, perfect for use as a laboratory guide
In many countries, especially in developing countries, many people are lacking access to water and sanitation services and this inadequate service is the main cause of diseases in these countries. Application of appropriate wastewater treatment technologies, which are effective, low cost (in investment and especially in operation and maintenance), simple to operate, proven technologies, is a key component in any strategy aimed at increasing the coverage of wastewater treatment. Sustainable Treatment and Reuse of Municipal Wastewater presents the concepts of appropriate technology for wastewater treatment and the issues of strategy and policy for increasing wastewater treatment coverage. The book focuses on the resolution of wastewater treatment and disposal problems in developing countries, however the concepts presented are valid and applicable anywhere and plants based on combined unit processes of appropriate technology can also be used in developed countries and provide to them the benefits described. Sustainable Treatment and Reuse of Municipal Wastewater presents the basic engineering design procedures to obtain high quality effluents by treatment plants based on simple, low cost and easy to operate processes. The main message of the book is the idea of the ability to combine unit processes to create a treatment plant based on a series of appropriate technology processes which jointly can generate any required effluent quality. A plant based on a combination of appropriate technology unit processes is still easy to operate and is usually of lower costs than conventional processes in terms of investment and certainly in operation and maintenance. Chapters in the book are organized in a practical and accessible way to: Demonstrate selected unit process of appropriate technology and provide the scientific basis, the equations and the parameters required to design the unit processes, with some innovations developed by the authors. Highlight design procedures for selected combined processes which are in use in developing countries. Propose an innovative Orderly Design Method (ODM), which is easy to follow by practicing engineers, using the equations and formulas developed, once the fundamentals of each unit and combined process have been established. Provide a numeric example for the basic design of each selected appropriate technology process for a city with a population of 20,000 using the ODM and an Excel program which will be provided to the readers for download from an online web page. This book is a valuable and practical resource for all wastewater treatment engineers in field and the operational managers of waste treatment facilities. Authors: Menahem Libhaber, PhD, Consulting Engineer to the World Bank and other institutions, Alvaro Orozco Jaramillo, MSc, Consulting Engineer to the World Bank, the Inter-American Development Bank, Biwater and other institutions in various countries.
Tackling the issue of water and wastewater treatment nowadays requires novel approaches to ensure that sustainable development can be achieved. Water and wastewater treatment should not be seen only as an end-of-pipe solution but instead the approach should be more holistic and lead to a more sustainable process. This requires the integration of various methods/processes to obtain the most optimized design. Integrated and Hybrid Process Technology for Water and Wastewater Treatment discusses the state-of-the-art development in integrated and hybrid treatment processes and their applications to the treatment of a vast variety of water and wastewater sources. The approaches taken in this book are categorized as (i) resources recovery and consumption, (ii) optimal performance, (iii) physical and environmental footprints, (iv) zero liquid discharge concept and are (v) regulation-driven. Through these categories, readers will see how such an approach could benefit the water and wastewater industry. Each chapter discusses challenges and prospects of an integrated treatment process in achieving sustainable development. This book serves as a platform to provide ideas and to bridge the gap between laboratory-scale research and practical industry application. - Includes comprehensive coverage on integrated and hybrid technology for water and wastewater treatment - Takes a new approach in looking at how water and wastewater treatment contributes to sustainable development - Provides future direction of research in sustainable water and wastewater treatment