Download Free Sustainable Utilization Of Carbon Dioxide In Waste Management Book in PDF and EPUB Free Download. You can read online Sustainable Utilization Of Carbon Dioxide In Waste Management and write the review.

Sustainable Utilization of Carbon Dioxide in Waste Management addresses all aspects of sustainable use of carbon dioxide in waste management processes and provides best practices and process improvements for carbon sequestration in the management of a variety of waste types, including carbide lime waste, construction waste, and reject brine effluents, amongst others. The book also provides underlying research on the environmental impacts of these wastes and the need for carbon capture to emphasize the importance and need for improvements of these processes. Overall, this information will be key to determining lifecycle benefits of CO2 for each newly improved waste process. This is an important source of information for environmental and sustainability scientists and engineers, as well as academics and researchers in the field who should be trying to achieve increased carbon capture in any form of waste process to reduce environmental impact. - Introduces the basic principles of carbon sequestration by alkaline solid waste (cement kiln dust, steel slag, fly ash, and carbide lime wastes), detailing the lack of current sustainability - Provides a comprehensive resource on carbon sequestration in a variety of waste processes and practical guidance on applying them to these processes - Details the need for carbon capture in these processes and the environmental impacts of not doing so - Outlines the methods for determining lifecycle benefits of CO2 for each newly developed product
In the quest to mitigate the buildup of greenhouse gases in Earth's atmosphere, researchers and policymakers have increasingly turned their attention to techniques for capturing greenhouse gases such as carbon dioxide and methane, either from the locations where they are emitted or directly from the atmosphere. Once captured, these gases can be stored or put to use. While both carbon storage and carbon utilization have costs, utilization offers the opportunity to recover some of the cost and even generate economic value. While current carbon utilization projects operate at a relatively small scale, some estimates suggest the market for waste carbon-derived products could grow to hundreds of billions of dollars within a few decades, utilizing several thousand teragrams of waste carbon gases per year. Gaseous Carbon Waste Streams Utilization: Status and Research Needs assesses research and development needs relevant to understanding and improving the commercial viability of waste carbon utilization technologies and defines a research agenda to address key challenges. The report is intended to help inform decision making surrounding the development and deployment of waste carbon utilization technologies under a variety of circumstances, whether motivated by a goal to improve processes for making carbon-based products, to generate revenue, or to achieve environmental goals.
Carbon Dioxide Utilisation: Closing the Carbon Cycle explores areas of application such as conversion to fuels, mineralization, conversion to polymers, and artificial photosynthesis as well as assesses the potential industrial suitability of the various processes. After an introduction to the thermodynamics, basic reactions, and physical chemistry of carbon dioxide, the book proceeds to examine current commercial and industrial processes, and the potential for carbon dioxide as a green and sustainable resource. While carbon dioxide is generally portrayed as a "bad" gas, a waste product, and a major contributor to global warming, a new branch of science is developing to convert this "bad" gas into useful products. This book explores the science behind converting CO2 into fuels for our cars and planes, and for use in plastics and foams for our homes and cars, pharmaceuticals, building materials, and many more useful products. Carbon dioxide utilization is a rapidly expanding area of research that holds a potential key to sustainable, petrochemical-free chemical production and energy integration. - Accessible and balanced between chemistry, engineering, and industrial applications - Informed by blue-sky thinking and realistic possibilities for future technology and applications - Encompasses supply chain sustainability and economics, processes, and energy integration
This book focuses on an important technology for mineralizing and utilizing CO2 instead of releasing it into the atmosphere. CO2 mineralization and utilization demonstrated in the waste-to-resource supply chain can “reduce carbon dependency, promote resource and energy efficiency, and lessen environmental quality degradation,” thereby reducing environmental risks and increasing economic benefits towards Sustainable Development Goals (SDG). In this book, comprehensive information on CO2 mineralization and utilization via accelerated carbonation technology from theoretical and practical considerations was presented in 20 Chapters. It first introduces the concept of the carbon cycle from the thermodynamic point of view and then discusses principles and applications regarding environmental impact assessment of carbon capture, storage and utilization technologies. After that, it describes the theoretical and practical considerations for “Accelerated Carbonation (Mineralization)” including analytical methods, and systematically presents the carbonation mechanism and modeling (process chemistry, reaction kinetics and mass transfer) and system analysis (design and analysis of experiments, life cycle assessment and cost benefit analysis). It then provides physico-chemical properties of different types of feedstock for CO2 mineralization and then explores the valorization of carbonated products as green materials. Lastly, an integral approach for waste treatment and resource recovery is introduced, and the carbonation system is critically assessed and optimized based on engineering, environmental, and economic (3E) analysis. The book is a valuable resource for readers who take scientific and practical interests in the current and future Accelerated Carbonation Technology for CO2 Mineralization and Utilization.
This textbook presents students with a systematic approach for the quantification and management of greenhouse gas emissions (GHG) and provides best practices for optimal carbon management and quantification. The book begins with an overview of climate change basics and goes on to discuss carbon footprint measurements, carbon management concepts, and concludes by presenting carbon reduction solutions with applications for green buildings, smart transportation, waste management, and carbon trading and offsetting. The author provides practical examples and carbon management models that support innovative reduction solutions and presents a roadmap for the implementation and development of carbon management strategies, making it a useful resource for both upper undergraduate and graduate students as well as practitioners seeking a comprehensive framework to conduct carbon management.
The Light Metals symposia are a key part of the TMS Annual Meeting & Exhibition, presenting the most recent developments, discoveries, and practices in primary aluminum science and technology. Publishing the proceedings from these important symposia, the Light Metals volume has become the definitive reference in the field of aluminum production and related light metal technologies. Light Metals 2011 offers a mix of the latest scientific research findings and applied technology, covering alumina and bauxite, aluminum reduction technology, aluminum rolling, cast shop for aluminum production, electrode technology, and furnace efficiency.
This book covers the latest technology and experimental scientific advancements in converting carbon dioxide (CO2) from waste to useful commercial products. This approach helps to mitigate climate change due to carbon emission greenhouse effect and also create a circular economy through CO2 waste capture and utilization to produce CO2 derived products. This provides new direction for government organizations, manufacturing industries (fuel, chemicals, building materials) and investment firms to work towards a zero carbon future. This book caters to researchers, policymakers, industrial practitioners who are interested in more sustainable practices in carbon dioxide technology.
In the 21st century, management of municipal solid waste (MSW) continues to be an important environmental challenge facing the U.S. Climate change is also a serious issue, & the U.S. is embarking on a number of voluntary actions to reduce the emissions of greenhouse gases (GHGs) that can intensify climate change. By presenting material-specific GHG emission factors for various waste management options, this report examines how the two issues -- MSW management & climate change -- are related. The report's findings may be used to support a variety of programs & activities, including voluntary reporting of emission reductions from waste management practices. Charts, tables & graphs.
Carbon capture and storage (CCS) has been considered as a practical way in sequestering the huge anthropogenic CO2 amount with a reasonable cost until a more pragmatic solution appears. The CCS can work as a bridge before fulfilling the no-CO2 era of the future by applying to large-scale CO2 emitting facilities. But CCS appears to lose some passion by the lack of progress in technical developments and in commercial success stories other than EOR. This is the time to go back to basics, starting from finding a solution in small steps. The CCS technology desperately needs far newer ideas and breakthroughs that can overcome earlier attempts through improving, modifying, and switching the known principles. This book tries to give some insight into developing an urgently needed technical breakthrough through the recent advances in CCS research, in addition to the available small steps like soil carbon sequestration. This book provides the fundamental and practical information for researchers and graduate students who want to review the current technical status and to bring in new ideas to the conventional CCS technologies.